(本小题满分14分)
如图,在四棱锥中,⊥平面,⊥平面,
,。
(1)求证:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.
(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com