精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,在四棱锥中,⊥平面⊥平面

(1)求证:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.

(1)见解析;(2)二面角A—EB—D的余弦值为 。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)如图,在平行六面体中,的中点,设

(1)用表示
(2)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四面体被一平面所截,截面是一个平行四边形.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。

查看答案和解析>>

同步练习册答案