精英家教网 > 高中数学 > 题目详情
如图,M,N分别是空间四边形ABCD的棱AB,CD的中点,试判断向量
MN
与向量
AD
BC
是否共面.
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用向量关系推出
MN
=
1
2
AD
+
1
2
BC
,利用平面向量基本定理得到结果即可.
解答: 解 根据图形可以得到
MN
=
MA
+
AD
+
DN
,①
MN
=
MB
+
BC
+
CN
.②
由已知得
MA
=-
MB
DN
=-
CN

所以①+②得2
MN
=
AD
+
BC
,即
MN
=
1
2
AD
+
1
2
BC

故向量
MN
与向量
AD
BC
共面.
点评:本题考查平面向量基本定理的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α≠kπ(k∈Z),
a
=(msinα+cosα,nsinα-cosα),
b
=(1,1),且
a
b
,|
a
|=|
b
|,则mn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

G是一个非空集合,“O”为定义在G中任意两个元素之间的二元代数运算,若G及其运算满足对于任意的a,b∈G,aob=c,则c∈G,那么就说G关于这个“O”运算作成一个封闭集合,如集合A={x|x2=1},A对于数的乘法作成一个封闭集合.以下四个结论:
①集合{0}对于数的加法作成一个封闭集合;
②集合B{x|x=2n,n为整数},B对于数的减法作成一个封闭集合;
③令R是全体大于零 的实数所成集合,R对于数的乘法作成一个封闭集合;
④若集合A,B都对于某个“O”运算作成一个封闭集合,则A∪B对于这个“O”运算作成一个封闭集合.
 其中,正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=sin2x+2sinxcosx+3cos2x,求函数的单调递增区间和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+
y2
3
=1,试确定m的取值范围,使得对于直线l:y=4x+m,椭圆C上有两个不同的点关于直线l对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中AB=1,AD=2,∠DAB=60°,设
AB
=
a
AD
=
b

(1)把
AC
BD
a
b
向量来表示;
(2)求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过M(4,2)与椭圆
x2
8
+
y2
4
=1离心率相同的椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为45°,且|
a
|=1,|2
a
-
b
|=
10
,则|
b
|=(  )
A、
2
B、2
2
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图的三个图中,是一个长方体截去一个角所得多面体的直观图以及它的正视图和侧视图(单位:cm).

(1)按照给出的尺寸,求该多面体的表面积;
(2)按照给出的尺寸,求该多面体的体积.

查看答案和解析>>

同步练习册答案