精英家教网 > 高中数学 > 题目详情
6.如图是一个算法程序框图,当输入的x的值为4时,输出的结果恰好是$\frac{1}{4}$,则空白处的关系式可以是(  )
A.y=2-xB.y=2xC.y=x${\;}^{-\frac{1}{2}}$D.y=x${\;}^{\frac{1}{2}}$

分析 根据程序框图可知,程序运行时,列出数值x的变化情况,从而求出当x=-2时,输出$\frac{1}{4}$,从而得出答案.

解答 解:当x=4时,因为x>0,
所以x=x-2,即x=2≥0,
又x=x-2,即x=0≥0,
又x=x-2,即x=-2<0,
此时输出y=$\frac{1}{4}$;
所以方框内应填写y=2x
故选:B.

点评 本题考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知数列{an}是等差数列,若a1-a9+a17=7,则a3+a15=(  )
A.7B.14C.21D.7(n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a<b,则在下列的一段推理过程中,错误的推理步骤有③④.(填上所有错误步骤的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O:x2+y2=2,圆M:(x-a)2+(y-a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A、B,使得四边形PAOB为正方形,则实数a的取值范围为[$2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为(  )
A.19B.20C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex(alnx+$\frac{2}{x}$+b),其中a,b∈R,e≈2.71828自然对数的底数.
(1)若曲线y=f(x)在x=1的切线方程为y=e(x-1),求实数a,b的值;
(2)①若a=-2时,函数y=f(x)既有极大值,又有极小值,求实数b的取值范围;
②若a=2,b≥-2,若f(x)≥kx对一切正实数x恒成立,求实数k的最大值(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanA;    
(Ⅱ)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的奇数项a1,a3,a5,…a2k-1,…构成首项a1=1等差数列,偶数项构成公比q=2的等比数列,且a1,a2,a3成等比数列,a4,a5,a7成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正四面体ABCD的棱长为2,若动点P从底面△BCD的BC的中点出发,沿着正四面体的侧面运动到D点停止,则动点P经过的最短路径长为(  )
A.3B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案