精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2cos(x+$\frac{5π}{12}$)sin(x+$\frac{π}{4}$)+$\frac{1}{2}$,x∈R.
(1)求f(x)的单调增区间;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=-$\frac{\sqrt{3}}{2}$,若向量$\overrightarrow{m}$=(1,sinA)与$\overrightarrow{n}$=(2,sinB)共线,求a、b的值.

分析 (1)由三角函数恒等变换的应用化简函数解析式为$f(x)=sin(2x+\frac{2π}{3})$,利用正弦函数的单调性即可解得f(x)的递增区间.
(2)由$f(C)=sin(2C+\frac{2π}{3})=-\frac{{\sqrt{3}}}{2}$,解得$2C+\frac{2π}{3}=\frac{4π}{3}$或$\frac{5π}{3}$,可得C的值,由题意可得sinB-2sinA=0,由正弦定理得b=2a,分别由余弦定理,勾股定理即可解得a,b的值.

解答 解:(1)∵$f(x)=2cos(x+\frac{5π}{12})sin(x+\frac{π}{4})+\frac{1}{2}$
=2cos(x+$\frac{π}{2}$-$\frac{π}{3}$+$\frac{π}{4}$)sin(x+$\frac{π}{4}$)$+\frac{1}{2}$
=-2[sin(x+$\frac{π}{4}$)cos$\frac{π}{3}$-cos(x+$\frac{π}{4}$)sin$\frac{π}{3}$]sin(x+$\frac{π}{4}$)+$\frac{1}{2}$
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x
=$sin(2x+\frac{2π}{3})$,
∴2k$π-\frac{π}{2}$≤2x$+\frac{2π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,可得解得:k$π-\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}$,k∈Z,
∴f(x)的递增区间为$[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,k∈Z.
(2)∵$f(C)=sin(2C+\frac{2π}{3})=-\frac{{\sqrt{3}}}{2}$,
∴$2C+\frac{2π}{3}=\frac{4π}{3}$或$\frac{5π}{3}$,解得$C=\frac{π}{3}$或$\frac{π}{2}$.
∵$\overrightarrow m=(1,sinA)$与$\overrightarrow n=(2,sinB)$共线,
∴sinB-2sinA=0,
∴由正弦定理可得$\frac{a}{b}=\frac{sinA}{sinB}=\frac{1}{2}$,即b=2a,①
当$C=\frac{π}{3}$时,
∵C=3,∴由余弦定理可得$9={a^2}+{b^2}-2abcos\frac{π}{3}$,②
联立①②解方程组可得$\left\{\begin{array}{l}a=\sqrt{3}\\ b=2\sqrt{3}\end{array}\right.$
当$C=\frac{π}{2}$时,
∵c=3,∴由勾股定理可得9=a2+b2,③
联立①③可得$a=\frac{{3\sqrt{5}}}{5}$,$b=\frac{{6\sqrt{5}}}{5}$,
综上$a=\sqrt{3}$,$b=2\sqrt{3}$,或$a=\frac{{3\sqrt{5}}}{5}$,$b=\frac{{6\sqrt{5}}}{5}$.

点评 本题主要考查了三角函数恒等变换的应用,正弦定理,余弦定理,勾股定理,平面向量共线的性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{\begin{array}{l}{({\frac{1}{2}})^x},x≤0\\{log_2}({x+2}),x>0\end{array}\right.$,若f(x0)=2,则x0=(  )
A.2或-1B.2C.-1D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{{\begin{array}{l}{({2a-1})x+2a,x<1}\\{{{log}_a}x,x≥1}\end{array}}\right.$是R上的减函数,则实数a的取值范围是(  )
A.$(0,\frac{1}{2})$B.[$\frac{1}{4},\frac{1}{2}$)C.($\frac{1}{4},\frac{1}{2}$)D.($0,\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a=2”是“a≥1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分不要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个四棱锥的底面为正方形,其三视图如图所示,其中主视图和左视图均为等腰三角形,俯视图是一个正方形,则这个四棱锥的体积是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个底面直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,求此球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=x2+2x+1.
(1)求y=f(x)的图象与两坐标所围成图形的面积;
(2)若直线x=-t(0<t<1)等于y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设D是△ABC的边BC上一点,且$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,若AB:AD:AC=3:k:1,则k的取值范围是(  )
A.($\frac{1}{3}$,$\frac{4}{3}$)B.(1,4)C.($\frac{5}{3}$,$\frac{7}{3}$)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{sinx}$+$\sqrt{tanx}$的定义域为{x|2kπ≤x<2kπ+$\frac{π}{2}$或x=(2k+1)π,k∈Z}.

查看答案和解析>>

同步练习册答案