精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x3+ax2+bx(其中常数a,b∈R),g(x)=f(x)-f′(x)是奇函数,
(1)求f(x)的表达式;
(2)求g(x)在[1,3]上的最大值和最小值.

分析 (1)先求出导函数,再根据奇函数的性质即可求出a,b的值,问题得以解决,
(2)根据导数在闭区间上的应用,即可求出最值.

解答 解:(1)∵f(x)=x3+ax2+bx(其中常数a,b∈R),
∴f′(x)=3x2+2ax+b,
∴g(x)=f(x)-f′(x)=x3+ax2+bx-3x2-2ax-b,
∵g(x)=f(x)-f′(x)是奇函数,
∴a-3=0,b=0,
∴f(x)=x3+3x2
(2)∵f′(x)=3x2+6x,x∈[1,3]
∴g(x)=x3-6x,
∴g′(x)=3x2-6,
令g′(x)=3x2-6=0,解得x=$\sqrt{2}$,
当g′(x)>0时,即$\sqrt{2}$<x≤3,函数单调递增,
当g′(x)<0时,即1≤x<$\sqrt{2}$,函数单调递减,
∴g(x)min=g($\sqrt{2}$)=2$\sqrt{2}$-6$\sqrt{2}$=-4$\sqrt{2}$,
∵g(1)=1-6=-5,g(3)=27-18=9,
∴g(x)max=g(3)=9

点评 本题考查了导数和函数的最值的关系以及奇函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若不等式(x+y)($\frac{1}{x}$+$\frac{4}{y}$)≥m,对任意正实数x,y恒成立,则实数m的取值范围是(  )
A.[3,+∞)B.[6,+∞)C.(-∞,9]D.(-∞,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow{a}$=($\frac{3}{2}$,1+sina),$\overrightarrow{b}$=(1-cosa,$\frac{1}{3}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角a为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)同时满足以下三个条件
(1)f(x)+f(2-x)=0,
(2)f(x)=(-2-x)
(3)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,0]}\\{1-x,x∈(0,1]}\end{array}\right.$
则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$的图象在区间[-3,3]上公共点个数为6个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一组数据的方差是5,将这组数据中的每一个数据都乘以2,再加3,所得到的一组数据的方差是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若对于任意的x>0时均有(x-a+2)(x2-ax-2)≥0,则实数a的值为(  )
A.1B.2C.$\sqrt{2}$-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是(  )
A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥b
C.若a?α,b?β,a∥b,则α∥βD.若a⊥b,a⊥α,b?α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式ax2+3x-2<0的解集为{x|x<1或x>b}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式ax2+(b-ac)x-bc>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+bx+c在x=-2与x=1时都取得极值
(Ⅰ) 求a,b的值与函数f(x)的单调区间
(Ⅱ)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案