精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x3+ax2+bx+c在x=-2与x=1时都取得极值
(Ⅰ) 求a,b的值与函数f(x)的单调区间
(Ⅱ)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

分析 (Ⅰ)求出f′(x)并令其=0得到方程,把x=1和x=-2代入求出a、b即可;
(Ⅱ)求出f(x)在[-1,2]的最大值,得到关于c的不等式,解出即可.

解答 解:(Ⅰ)f′(x)=3x2+2ax+b,
∵函数在x=1,x=-2时都取得极值,
∴1,-2是3x2+2ax+b=0的两个根,
1-2=-$\frac{2}{3}$a,-2=$\frac{b}{3}$,
∴a=$\frac{3}{2}$,b=-6,
∴f(x)=x3+$\frac{3}{2}$x2-6x+c,f′(x)=3x2+3x-6=3(x+2)(x-1),
令f′(x)>0,解得:x>1或x<-2,
令f′(x)<0,解得:-2<x<1,
∴f(x)在(-∞,-2)递增,(-2,1)递减,(1,+∞)递增;
(Ⅱ)由(Ⅰ)得:f(x)在[-1,1)递减,在(1,2]递增,
∴f(x)max=f(-1)=$\frac{13}{2}$+c<c2
解得:c>2或c<-1.

点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+ax2+bx(其中常数a,b∈R),g(x)=f(x)-f′(x)是奇函数,
(1)求f(x)的表达式;
(2)求g(x)在[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P为△ABC边上或内部任一点,则使S△PBC≤$\frac{1}{3}$S△ABC的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设向量$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量且夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
(1)求该函数的最小正周期和取最小值时x的集合;
(2)若x∈[0,π],求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=(x-1)ex的单调减区间为(  )
A.(-∞,0)B.(0,1)C.(1,4)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P的极坐标为(π,π),则过点P且垂直于极轴的直线的极坐标方程为(  )
A.ρ=πB.ρ=cosθC.ρ=$\frac{π}{cosθ}$D.ρ=$\frac{-π}{cosθ}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.①α=2kπ+$\frac{π}{3}$(k∈Z),则tanα=$\sqrt{3}$
②函数f(x)=|2cosx-1|的最小正周期是π;
③在△ABC中,若cosAcosB>sinAsinB,则△ABC为钝角三角形;
④若a+b=0,则函数y=asinx-bcosx的图象的一条对称轴方程为x=$\frac{π}{4}$.
其中是真命题的序号为(  )
A.1.3.4B.1.2.3C.2.3.4D.1.2 4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=($\frac{1}{3}$)${\;}^{{x^2}-3x}}$的单调递增区间是(-∞,$\frac{3}{2}$).

查看答案和解析>>

同步练习册答案