分析 (1)运用二倍角公式和两角差的正弦公式,化简已知函数,再由正弦函数图象的性质进行解答;
(2)由正弦函数的单调增区间[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],列出关于x的不等式,求出不等式的解集,令解集中k=0和1,得到x的范围,与x∈[0,π]取交集,即可得到该函数的单调递增区间.
解答 解:(1)$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
=(sin4x-cos4x)+$\sqrt{3}$•(2sinxcosx)
=(sin2x-cos2x)(sin2x+cos2x)+$\sqrt{3}$sin2x
=$\sqrt{3}$sin2x-cos2x=2($\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)
=2sin(2x-$\frac{π}{6}$),
所以T=π,函数取最小值时x的集合为{x|x=kπ-$\frac{π}{6}$(k∈Z)};…(6分)
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
则kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,…(8分)
令k=0,1,得到x∈[-$\frac{π}{6}$,$\frac{π}{3}$]或x∈[$\frac{5π}{6}$,$\frac{4π}{3}$],
与x∈[0,π]取交集,得到x∈[0,$\frac{π}{3}$]或x∈[$\frac{5π}{6}$,π],
则当x∈[0,π]时,函数的递增区间是x∈[0,$\frac{π}{3}$]或x∈[$\frac{5π}{6}$,π].…(12分)
点评 本题考查三角函数的化简和求值,考查二倍角公式和两角差的正弦公式,考查正弦函数的值域、单调性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com