精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{\begin{array}{l}{|x-1|,x∈(0,2)}\\{2-|x-1|,x∈(-∞,0]∪[2,+∞)}\end{array}\right.$,则函数y=f(x)与y=$\frac{1}{2}$的图象的交点的个数是4.

分析 函数y=f(x)与y=$\frac{1}{2}$的图象的交点,即是f(x)=$\frac{1}{2}$的解,分段解得即可.

解答 解:当x∈(0,2)时,|x-1|=$\frac{1}{2}$,解得x=$\frac{1}{2}$或x=$\frac{3}{2}$,
当x∈(-∞,0]∪[2,+∞)时,2-|x-1|=$\frac{1}{2}$,解得x=-$\frac{1}{2}$或x=$\frac{5}{2}$,
综上所述函数y=f(x)与y=$\frac{1}{2}$的图象的交点的个数是4,
故答案为:4

点评 本题主要考查分段函数的应用,以及方程的解的问题,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若输入a=16,A=1,S=0,n=1,执行如图所示的程序框图,则输出的结果为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{1}{{{{(|x-1|-a)}^2}}}$的定义域为D,其中a<1.
(1)当a=-3时,写出函数f(x)的单调区间(不要求证明);
(2)若对于任意的x∈[0,2]∩D,均有f(x)≥kx2成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若关于x的不等式ax2-4ax-2>0的解集与集合{x|3<x<4}的交集不空,则实数a的取值范围是(-∞,-$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P为△ABC边上或内部任一点,则使S△PBC≤$\frac{1}{3}$S△ABC的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知三角形的三个顶点A(-1,2),B(3,-1),C(-1,-3),求BC边中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
(1)求该函数的最小正周期和取最小值时x的集合;
(2)若x∈[0,π],求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设△ABC的三个内角为A,B,C,若$\sqrt{3}$sin(A+B)=1+cos(A+B),则C的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案