精英家教网 > 高中数学 > 题目详情
6.在棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,CA=CB=CC1=2,∠ACB=90°,D,E分别是线段BC,AA1的中点.
(1)求证:DE∥平面A1C1B;
(2)求直线DE与平面ABB1A1所成的角的正弦值.

分析 (1)取BC1的中点M,连接DM,A1M,可通过证明四边形A1EDM是平行四边形得出DE∥A1M,于是DE∥平面A1C1B;
(2)过D作DH⊥AB于H,则∠HED为DE与平面AA1B1B所成的角,利用勾股定理计算DE,DH,得出sin∠HED.

解答 证明:(I)取BC1的中点M,连接DM,A1M,
则DM∥CC1,DM=$\frac{1}{2}$CC1
又E为AA1的中点,∴A1E∥CC1,A1E=$\frac{1}{2}$CC1
∴A1E∥DM,A1E=DM,
∴四边形A1EDM是平行四边形,
∴DE∥A1M,又A1M?平面A1C1B,DE?平面A1C1B,
∴DE∥平面A1C1B.
(II)过C作CN⊥AB,过D作DH⊥AB,
∵A1A⊥平面ABC,DH?平面ABC,
∴A1A⊥DH,又DH⊥AB,A1A∩AB=A,
∴DH⊥平面AA1B1B,
∴∠HED为DE与平面AA1B1B所成的角,
∵AC=BC=2,AC⊥BC,∴CN=$\frac{1}{2}$AB=$\sqrt{2}$,
∴DH=$\frac{1}{2}$CN=$\frac{\sqrt{2}}{2}$,
∵AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{5}$,AE=$\frac{1}{2}$C1C=1,
∴DE=$\sqrt{A{E}^{2}+A{D}^{2}}$=$\sqrt{6}$,
∴sin∠HED=$\frac{DH}{DE}$=$\frac{\sqrt{3}}{6}$.
∴直线DE与平面ABB1A1所成的角的正弦值为$\frac{\sqrt{3}}{6}$.

点评 本题考查了线面平行的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题中是假命题的是(  )
A.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是幂函数
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.?φ∈R,函数f(x)=sin(x+φ)都不是偶函数
D.?a>0,函数f(x)=ln2x+lnx-a有零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P为△ABC边上或内部任一点,则使S△PBC≤$\frac{1}{3}$S△ABC的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知三角形的三个顶点A(-1,2),B(3,-1),C(-1,-3),求BC边中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设向量$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量且夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
(1)求该函数的最小正周期和取最小值时x的集合;
(2)若x∈[0,π],求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P的极坐标为(π,π),则过点P且垂直于极轴的直线的极坐标方程为(  )
A.ρ=πB.ρ=cosθC.ρ=$\frac{π}{cosθ}$D.ρ=$\frac{-π}{cosθ}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数)的离心率为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{\sqrt{7}}{3}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{7}}{5}$

查看答案和解析>>

同步练习册答案