精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4
(1)求证:BC⊥AC1
(2)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.
分析:(1)利用线面垂直的判定定理和性质定理即可证明;
(2)证法一:利用线面平行的判定定理即可证明;证法二:利用面面平行的判定定理.
解答:证明:(1)∵AA1⊥平面ABC,∴AA1⊥BC,
又∵AC⊥BC,AA1∩AC=A,
∴BC⊥平面AA1C1C,
∴BC⊥AC1
(2)解法一:当AF=3FC时,EF∥平面AA1B1B.
证明如下:在平A1B1C1内过E作EG∥A1C1交A1B1于G,连接AG.
∵B1E=3EC1,∴
EG
A1C1
=
B1E
B1C1
=
3
4

又AF∥A1C1
AF
AC
=
AF
A1C1
=
3
4

∴AF∥EG且AF=EG,
∴四边形AFEG为平行四边形,∴EF∥GA,
又∵EF?面AA1B1B,AG?平面AA1B1B,
∴EF∥平面AA1B1B.
解法二:当AF=3FC时,FE∥平面A1ABB1
证明:在平面ABC内过E作EG∥BB1交BC于G,连接FG.
∵EG∥BB1,EG?A1ABB1,BB1?平面A1ABB1
∴EG∥平面A1ABB1
∵B1E=3EC1,∴BG=3GC.
∴FG∥AB,
又AB?平面A1ABB1,FG?平面A1ABB1
∴FG∥平面A1ABB1
又EG∩FG=F,
∴平面EFG∥平面A1ABB1
∴EF∥平面A1ABB1
点评:熟练掌握线面、面面平行和垂直的判定定理和性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案