分析 (1)由椭圆方程求出焦点坐标,得到直线AB、CD的方程,与椭圆方程联立求得A、D的坐标,求出AD所在直线斜率得答案;
(2)由(1)结合弦长公式求得|AB|,再由两平行线间的距离公式求出边AB、CD的距离,代入平行四边形面积公式,利用换元法求得最值.
解答 (1)证明:由椭圆C:$\frac{{x}^{2}}{4}$+y2=1,得a2=4,b2=1,∴$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{3}$.
设k1=k,则AB所在直线方程为y=kx+$\sqrt{3}k$,CD所在直线方程为y=kx-$\sqrt{3}k$,
联立$\left\{\begin{array}{l}{y=kx+\sqrt{3}k}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+8$\sqrt{3}$k2x+12k2-4=0.
解得$x=\frac{-4\sqrt{3}{k}^{2}±2\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$,不妨取${x}_{B}=\frac{-4\sqrt{3}{k}^{2}-2\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$,则${y}_{B}=\frac{\sqrt{3}k-2k\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$
同理求得${x}_{C}=\frac{4\sqrt{3}{k}^{2}-2\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$,${y}_{C}=\frac{-\sqrt{3}k-2k\sqrt{{k}^{2}+1}}{1+4{k}^{2}}$.
则${k}_{2}=\frac{\sqrt{3}k-2k\sqrt{{k}^{2}+1}+\sqrt{3}k+2k\sqrt{{k}^{2}+1}}{-4\sqrt{3}{k}^{2}-2\sqrt{{k}^{2}+1}-4\sqrt{3}{k}^{2}+2\sqrt{{k}^{2}+1}}$=$\frac{2\sqrt{3}k}{-8\sqrt{3}{k}^{2}}$=$-\frac{1}{4k}$,则k1•k2=$k•(-\frac{1}{4k})=-\frac{1}{4}$;
(2)解:由(1)知,${x}_{A}+{x}_{B}=-\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}},{x}_{A}{x}_{B}=\frac{12{k}^{2}-4}{1+4{k}^{2}}$,
|AB|=$\sqrt{1+{k}^{2}}\sqrt{({x}_{A}+{x}_{B})^{2}-4{x}_{A}{x}_{B}}$=$\sqrt{1+{k}^{2}}\sqrt{(-\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}})^{2}-\frac{48{k}^{2}-16}{1+4{k}^{2}}}$=$\frac{4(1+{k}^{2})}{1+4{k}^{2}}$.
AB、CD的距离d=$\frac{2\sqrt{3}|k|}{\sqrt{1+{k}^{2}}}$,
∴${S}_{四边形ABCD}=\frac{4(1+{k}^{2})}{1+4{k}^{2}}•\frac{2\sqrt{3}|k|}{\sqrt{1+{k}^{2}}}$=$8\sqrt{3}\sqrt{\frac{{k}^{4}+{k}^{2}}{(1+4{k}^{2})^{2}}}$.
令1+4k2=t(t≥1),
则$S=8\sqrt{3}\sqrt{-\frac{3}{16}(\frac{1}{t})^{2}+\frac{1}{8}(\frac{1}{t})+\frac{1}{16}}$,∴当t=3时,Smax=4.
点评 本题考查直线与椭圆位置关系的应用,考查了换元法求函数的最值,考查计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x,g(x)=($\sqrt{x}$)2 | B. | f(x)=x2+1,g(t)=t2+1 | C. | f(x)=1,g(x)=$\frac{x}{x}$ | D. | f(x)=x,g(x)=|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com