精英家教网 > 高中数学 > 题目详情
9.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(-x+5)=f(x-3)且方程f(x)=x有等根.
(1)求f(x)的表达式;
(2)是否存在实数m,n(m<n)使f(x)的定义域和值域分别是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,说明理由.

分析 (1)利用函数的对称轴以及方程的根的关系,即可求解函数的表达式.
(2)求出函数的对称轴,通过m,n与对称轴讨论,结合函数的定义域与值域,列出方程求解即可.

解答 解:∵函数满足f(-x+5)=f(x-3),∴$f(x)的对称轴为x=1∴-\frac{b}{2a}=1$,
因为方程f(x)=x有等根,即ax2+bx-x=0,有重根,∴△=0,可得a=$-\frac{1}{2}$,
可得b=1,
∴二次函数f(x)=-$\frac{1}{2}$x2+x.
(2)二次函数f(x)=-$\frac{1}{2}$x2+x.的对称轴为x=1,
当m<n<1时,$\left\{\begin{array}{l}{f(m)=3m}\\{f(n)=3n}\end{array}\right.$,∴$\left\{\begin{array}{l}{n=0}\\{m=-4}\end{array}\right.$;
当1<m<n时,$\left\{\begin{array}{l}{f(m)=3n}\\{f(n)=3m}\end{array}\right.$,方程无解;
当n>1>m时,f(1)=$\frac{1}{2}$=3n,无解;
综上所述,n=0,m=-4.

点评 本题考查二次函数的简单性质的应用,函数的对称轴与函数的定义域与值域的关系,考查分类讨论思想以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中点,且PA=PB=AB=2,BC=$\sqrt{2}$.
(1)求证:PC∥平面EBD;
(2)求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,椭圆C:$\frac{{x}^{2}}{4}$+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2
(1)当直线l1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;
(Ⅲ)在(Ⅱ)的条件下,从该车间12名工人中,任取2人,记取出的2人中优秀工人的人数为随机变量ξ,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x≥60),每个月的销售利润为y元.
(1)求y与x的函数关系式;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x-a(x+1)ln(x+1)(a≥0).
(1)求f(x)的单调区间;
(2)当a=1时,若方程f(x)-t=0在[-$\frac{1}{2}$,1]上有两个实数解,求实数t的取值范围;
(3)证明:当m>n>0时,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD,底面ABCD是∠ABC=60°的菱形,侧面PAD是边长为2的正三角形,O是AD的中点,M为PC的中点.
(1)求证:PC⊥AD;
(2)若PO与底面ABCD垂直,求直线DM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求函数y=2x-$\sqrt{x-1}$的值域;
(2)求函数y=$\frac{3x-1}{x+1}$的值域.

查看答案和解析>>

同步练习册答案