精英家教网 > 高中数学 > 题目详情
3.已知圆M:x2+(y-1)2=1<,Q是x轴上的动点,QA,QB分别切圆M于A,B两点.
(1)若Q(1,0),求切线QA,QB的方程;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程.

分析 (1)设出直线方程,利用直线与圆相切,列出方程求解即可.
(2)设AB与MQ交于P,求出|MP|.在Rt△MBQ中,|MB|2=|MP||MQ|,设Q(x,0),求出Q的坐标,然后求解直线方程.

解答 解(1)设过点Q的圆M的切线方程为x=my+1,则圆心M到切线的距离为1,
∴$\frac{|2m+1|}{\sqrt{{m}^{2}+1}}$=1,∴m=$-\frac{4}{3}$或0,
∴QA,QB的方程分别为3x+4y-3=0和x=1.
(2)设AB与MQ交于P,则MP⊥AB,MB⊥BQ,∴|MP|=$\sqrt{1-(\frac{2\sqrt{2}}{3})^{2}}=\frac{1}{3}$.
在Rt△MBQ中,|MB|2=|MP||MQ|,即1=$\frac{1}{3}$|MQ|,
∴|MQ|=3,∴x2+(y-2)2=9.
设Q(x,0),则x2+22=9,∴x=±$\sqrt{5}$,∴Q(±$\sqrt{5}$,0),
∴MQ的方程为2x+$\sqrt{5}$y-2$\sqrt{5}$=0或2x-$\sqrt{5}$y+2$\sqrt{5}$=0.

点评 本题考查直线与圆的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={1,3,$\sqrt{3}$},B={1,m},A∪B=A,则m=(  )
A.0或$\sqrt{3}$B.0或3C.3或$\sqrt{3}$D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中点,且PA=PB=AB=2,BC=$\sqrt{2}$.
(1)求证:PC∥平面EBD;
(2)求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果f[f(x)]=4x+6,且f(x)是递增函数,则一次函数f(x)=2x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-alnx,$g(x)=-\frac{a+1}{x}$
(1)若a=1,求函数f(x)在x=e处的切线方程
(2)设函数h(x)=f(x)-g(x),求h(x)的单调区间
(3)若存在x0∈[1,e],(e=2.718…为自然对数的底数),使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:存在n∈R,使得f(x)=nx${\;}^{{n}^{2}+2n}$是幂函数,且在(0,+∞)上单调递增;命题q:“?x∈R,x2+2x>3x”的否定是“?x∈R,x2+2x<3x”,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,椭圆C:$\frac{{x}^{2}}{4}$+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2
(1)当直线l1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;
(Ⅲ)在(Ⅱ)的条件下,从该车间12名工人中,任取2人,记取出的2人中优秀工人的人数为随机变量ξ,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD,底面ABCD是∠ABC=60°的菱形,侧面PAD是边长为2的正三角形,O是AD的中点,M为PC的中点.
(1)求证:PC⊥AD;
(2)若PO与底面ABCD垂直,求直线DM与平面PAC所成的角的正弦值.

查看答案和解析>>

同步练习册答案