精英家教网 > 高中数学 > 题目详情
10.若函数f(x)是幂函数,且满足$\frac{f(2)}{f(4)}$=$\frac{1}{2}$,则f(2)的值为2.

分析 设f(x)=xα,依题意可求得α,从而可求得f(2)的值.

解答 解:设f(x)=xα,依题意,$\frac{{2}^{α}}{{4}^{α}}$=2=$\frac{1}{2}$,
∴α=1,
∴f(x)=x,
∴f(2)=2,
故答案为:2.

点评 本题考查幂函数的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B,C分别在l1、l2上,且BC=3,则过A,B,C三点圆的面积为(  )
A.B.C.$\frac{9π}{2}$D.$\frac{9}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知空间两点的坐标分别为A(1,0,-3),B(4,-2,1),则|AB|=$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-alnx,$g(x)=-\frac{a+1}{x}$
(1)若a=1,求函数f(x)在x=e处的切线方程
(2)设函数h(x)=f(x)-g(x),求h(x)的单调区间
(3)若存在x0∈[1,e],(e=2.718…为自然对数的底数),使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一个正倒立的圆锥容器中装有一定的水,现放入一个小球后,水面恰好淹过小球(水面与小球相切),且圆锥的轴截面是等边三角形,则容器中水的体积与小球的体积之比为5:4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,椭圆C:$\frac{{x}^{2}}{4}$+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2
(1)当直线l1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内的一组基底,则下列四组向量不能作为平面向量的基底的是(  )
A.$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正项数列{an}的前n项和Sn满足Sn2-(n2+n-1)Sn-(n2+n)=0;
(1)求数列{an}的通项公式an
(2)令bn=$\frac{1}{{(n+2){a_n}}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<$\frac{3}{8}$.

查看答案和解析>>

同步练习册答案