精英家教网 > 高中数学 > 题目详情
1.已知空间两点的坐标分别为A(1,0,-3),B(4,-2,1),则|AB|=$\sqrt{29}$.

分析 直接利用空间距离公式求解即可.

解答 解:空间两点的坐标分别为A(1,0,-3),B(4,-2,1),
则|AB|=$\sqrt{(1-4)^{2}+(0+2)^{2}+(-3-1)^{2}}$=$\sqrt{29}$.
故答案为:$\sqrt{29}$.

点评 本题考查空间距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合$P=\left\{{x|y=\sqrt{x+1}}\right\}$,集合$Q=\left\{{y|y=\sqrt{x+1}}\right\}$,则P与Q的关系是(  )
A.P=QB.P⊆QC.Q⊆PD.P∩Q=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系内,若曲线 C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则实数a取值范围为(  )
A.(1,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-x+2a-1(a为实常数).
(1)设h(x)=$\frac{f(x)}{x}$,若a=-1,求证:函数h(x)在区间$(0,\sqrt{3}]$上是增加的;
(2)若函数f(x)在区间[4,5]上是单调递减的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-1|+|x-a|.
(1)当a=3时,求不等式f(x)≥5的解集;
(2)若f(x)≥2对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${({x^3}-\frac{1}{x^2})^5}$展开式中的常数项是-10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.离心率为$\frac{3}{4}$的椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到椭圆的两个焦点距离之和为16,则,椭圆C的方程为$\frac{x^2}{64}+\frac{y^2}{28}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)是幂函数,且满足$\frac{f(2)}{f(4)}$=$\frac{1}{2}$,则f(2)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i为虚数单位,则(x+i)6的展开式中含x4的项为-15x4 (用数字作答).

查看答案和解析>>

同步练习册答案