| A. | $\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$ | B. | 3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$ | ||
| C. | $\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$ | D. | $\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$ |
分析 $\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内的一组基底,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$不共线,3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$共线,$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$不共线,$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$不共线,再由共线的向量不能作为平面向量的一组基底,能求出结果.
解答 解:在A中,∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两不共线的向量,
∴$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$不共线,
∴$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$能作为平面向量的一组基底;
在B中,∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两不共线的向量,
∴3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-2(3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)共线,
∴3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$不能作为平面向量的一组基底;
在C中,∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两不共线的向量,
∴$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$不共线,
∴$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$为平面向量的一组基底;
在D中,∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两不共线的向量,
∴$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$不共线,
∴$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$能作为平面向量的一组基底.
故选:B.
点评 本题考查平行向量的性质和应用,是基础题.解题时要认真审题,正确解题的关键是知道共线的向量不能作为平面向量的一组基底.
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (2,+∞) | C. | (-∞,-2) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x,g(x)=($\sqrt{x}$)2 | B. | f(x)=x2+1,g(t)=t2+1 | C. | f(x)=1,g(x)=$\frac{x}{x}$ | D. | f(x)=x,g(x)=|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com