精英家教网 > 高中数学 > 题目详情
17.函数y=$\frac{{{e^x}•{x^2}}}{{{e^{2x}}-1}}$的大致图象是(  )
A.B.C.D.

分析 根据函数在x=0时,解析式无意义,可得函数图象与y轴无交点,利用排除法,可得答案.

解答 解:当x=0时,解析式的分母为0,解析式无意义,
故函数图象与y轴无交点,
故排除A,B,D,
故选:C

点评 本题考查的知识点是函数的图象,排除法是解答此类问题的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内的一组基底,则下列四组向量不能作为平面向量的基底的是(  )
A.$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知R上的不间断函数g(x)满足:
①当x>0时,g'(x)>0恒成立;
②对任意的x∈R都有g(x)=g(-x).
又函数f(x)满足:对任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,当x∈[0,$\sqrt{3}$]时,f(x)=x3-3x.
若关于x的不等式g[f(x)]≤g(a2-a+2),对于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,则a的取值范围为(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正项数列{an}的前n项和Sn满足Sn2-(n2+n-1)Sn-(n2+n)=0;
(1)求数列{an}的通项公式an
(2)令bn=$\frac{1}{{(n+2){a_n}}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列举法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12-4n-4,n∈N*,且a2,a4,a8构成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an+$\frac{1}{{2}^{{a}_{n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正方体ABCD-A′B′C′D′中,P是A′D的中点,Q是B′D′的中点,判断直线PQ与平面AA′B′B的位置关系,并利用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面四组函数中,f(x)与g(x)表示同一个函数的是(  )
A.f(x)=|x|,$g(x)={({\sqrt{x}})^2}$B.f(x)=2x,$g(x)=\frac{{2{x^2}}}{x}$C.f(x)=x,$g(x)=\root{3}{x^3}$D.f(x)=x,$g(x)=\frac{1}{{\sqrt{x^2}}}$

查看答案和解析>>

同步练习册答案