精英家教网 > 高中数学 > 题目详情
8.已知R上的不间断函数g(x)满足:
①当x>0时,g'(x)>0恒成立;
②对任意的x∈R都有g(x)=g(-x).
又函数f(x)满足:对任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,当x∈[0,$\sqrt{3}$]时,f(x)=x3-3x.
若关于x的不等式g[f(x)]≤g(a2-a+2),对于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,则a的取值范围为(-∞,0]∪[1,+∞).

分析 由于函数g(x)满足:①当x>0时,g'(x)>0恒成立(g'(x)为函数g(x)的导函数);②对任意x∈R都有g(x)=g(-x),这说明函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,且有g|(x|)=g(x),所以g[f(x)]≤g(a2-a+2)?|f(x)|≤|a2-a+2|对x∈[2-$3\sqrt{3}$,2+3$\sqrt{3}$]恒成立,只要使得|f(x)|在定义域内的最大值小于等于|a2-a+2|的最小值,然后解出即可

解答 解:因为函数g(x)满足:当x>0时,g'(x)>0恒成立,且对任意x∈R都有g(x)=g(-x),
则函数g(x)为R上的偶函数且在[0,+∞)上为单调递增函数,且有g(|x|)=g(x),
∵关于x的不等式g[f(x)]≤g(a2-a+2),对于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,
∴|f(x)|≤|a2-a+2|对于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,
故只要使得定义域内|f(x)|max≤|a2-a+2|,
∵对任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,当x∈[0,$\sqrt{3}$]时,f(x)=x3-3x,
∴设x∈[-$\sqrt{3}$,0],则$\sqrt{3}$+x∈[0,$\sqrt{3}$],故f($\sqrt{3}$+x)=$(\sqrt{3}+x)^{3}-3(\sqrt{3}+x)$
∴f(x)=-f($\sqrt{3}$+x)=$-{x}^{3}-3\sqrt{3}x-6x$
∴$f(x)=\left\{\begin{array}{l}{-{x}^{3}-3\sqrt{3}{x}^{2}-6x,x∈[-\sqrt{3},0)}\\{{x}^{3}-3x,x∈[0,\sqrt{3}]}\end{array}\right.$
当x∈[-$\sqrt{3}$,0]时,$f'(x)=-3{x}^{2}-6\sqrt{3}x-6$,令f'(x)=0,得${x}_{1}=1-\sqrt{3}$,或${x}_{2}=-1-\sqrt{3}$(舍去)
∴f(x)在$[-\sqrt{3},1-\sqrt{3}]$上单调递增,则[$1-\sqrt{3}$,0]上单调递减,
$f(x)_{max}=f(1-\sqrt{3})=2$,$f(x)_{min}=f(-\sqrt{3})=0$
当x$∈[0,\sqrt{3}]$时,f'(x)=3x2-3=3(x+1)(x-1),令f'(x)=0,得x=1
∴f(x)在[0,1]单调递减,在[1,$\sqrt{3}$]单调递增,
∴f(x)min=f(1)=-2,$f(x)_{max}=f(0)=f(\sqrt{3})=0$
∵对任意的x∈R,都有f($\sqrt{3}$+x)=-f(x),
∴$f(x+2\sqrt{3})=-f(x+\sqrt{3})=f(x)$,即f(x)为周期函数且周期为T=$2\sqrt{3}$,
∴x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]时,f(x)max=2,
∴|a2-a+2|≥2,解得a≤0,或a≥1
故答案为:(-∞,0]∪[1,+∞).

点评 此题考查了函数的奇偶性和周期性的定义,利用导函数判断函数在定义域上的单调性以及求函数的最值,还考查了函数恒成立条件的应用,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.离心率为$\frac{3}{4}$的椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到椭圆的两个焦点距离之和为16,则,椭圆C的方程为$\frac{x^2}{64}+\frac{y^2}{28}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出以下四个结论,正确的个数为(  )
①函数f(x)=$\sqrt{3}$sin2x+cos2x图象的对称中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0)k∈Z;
②在△ABC中,“A>B”是“cos2A<cos2B”的充分不必要条件;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的必要不充分条件;
④若将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是$\frac{π}{12}$.
A.0B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i为虚数单位,则(x+i)6的展开式中含x4的项为-15x4 (用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设全集为R,A={x|x<2},B={x|x≥-3}.
(Ⅰ)求∁R(A∩B);∁R(A∪B);(∁RA)∪(∁RB);(∁RA)∩(∁RB);
(Ⅱ)由(Ⅰ)你能发现怎样的结论,请写出来.(不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则sinβ=(  )
A.$\frac{1}{7}$B.±$\frac{1}{7}$C.$\frac{\sqrt{2}}{10}$D.±$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.阅读下面的程序框图,运行相应的程序,输出的结果为(  )
A.$\frac{21}{13}$B.$\frac{13}{8}$C.$\frac{34}{21}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{{{e^x}•{x^2}}}{{{e^{2x}}-1}}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线的焦点坐标为(-$\frac{1}{32}$,0),则抛物线的标准方程为(  )
A.x=-8y2B.y=-8x2C.x=-16y2D.y=-16x2

查看答案和解析>>

同步练习册答案