精英家教网 > 高中数学 > 题目详情
19.给出以下四个结论,正确的个数为(  )
①函数f(x)=$\sqrt{3}$sin2x+cos2x图象的对称中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0)k∈Z;
②在△ABC中,“A>B”是“cos2A<cos2B”的充分不必要条件;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的必要不充分条件;
④若将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是$\frac{π}{12}$.
A.0B.2C.3D.1

分析 根据三角函数的对称性,可判断①;根据充要条件的定义,可判断②③;根据三角函数的奇偶性,可判断④.

解答 解:①函数f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$)图象的对称中心是($\frac{kπ}{2}$-$\frac{π}{12}$,0)k∈Z,故错误;
②在三角形中,cos2A<cos2B等价为1-2sin2A<1-2sin2B,即sinA>sinB.
若A>B,则边a>b,则2RsinA>2RsinB,则sinA>sinB.充分性成立.
若sinA>sinB,则2RsinA>2RsinB,则a>b,根据大边对大角,可知A>B,必要性成立.
所以,“A>B”是“sinA>sinB”的充要条件.
即A>B是cos2A<cos2B成立的充要条件,故错误;
③在△ABC中,“bcosA=acosB”?“sinBcosA=sinAcosB”?“sin(A-B)=0”?“A=B”?“△ABC为等腰三角形”
故“bcosA=acosB”是“△ABC为等边三角形”的必要不充分条件,故正确;
④若将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,则φ的最小值是$\frac{π}{12}$,故正确.
故选:B

点评 本题以命题的真假判断与应用为载体,考查了充要条件,三角函数的图象和性质等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知sin($\frac{π}{2}$+θ)=$\frac{1}{3}$,则2sin2$\frac{θ}{2}$-1等于(  )
A.$\frac{\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$±\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一个正倒立的圆锥容器中装有一定的水,现放入一个小球后,水面恰好淹过小球(水面与小球相切),且圆锥的轴截面是等边三角形,则容器中水的体积与小球的体积之比为5:4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内的一组基底,则下列四组向量不能作为平面向量的基底的是(  )
A.$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在(-1,1)上的函数f(x)满足下列条件:
①对任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+x+y}$);
②当x∈(-1,0)时,有f(x)>0,求证:
(1)f(x)是奇函数;
(2)f(x)是单调递减函数;
(3)f($\frac{1}{11}$)+f($\frac{1}{19}$)+…+f($\frac{1}{{{n^2}+5n+5}}$)>f($\frac{1}{3}$),其中n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个说法:
(1)函数f(x)=$\frac{1}{x}$的减区间为(-∞,0)∪(0,+∞)
(2)M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为1或-1;
(3)y=x2-2|x|-3的递增区间为[1,+∞);
(4)集合A={x|-1≤x≤7},B={x|k+1≤x≤2k-1},则能使A∪B=A的实数k的取值范围为(-∞,4].
其中说法正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知R上的不间断函数g(x)满足:
①当x>0时,g'(x)>0恒成立;
②对任意的x∈R都有g(x)=g(-x).
又函数f(x)满足:对任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,当x∈[0,$\sqrt{3}$]时,f(x)=x3-3x.
若关于x的不等式g[f(x)]≤g(a2-a+2),对于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,则a的取值范围为(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12-4n-4,n∈N*,且a2,a4,a8构成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an+$\frac{1}{{2}^{{a}_{n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案