精英家教网 > 高中数学 > 题目详情
12.设A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列举法表示集合A,B;
(2)求A∩B,A∪B.

分析 (1)由一元二次方程的解法求出集合A、B,并用列举法表示;
(2)由(1)和交集、并集的运算分别求出A∩B,A∪B.

解答 解:(1)由题意知,A={x|x2-x-6=0}={-2,3},
B={x|x2+3x+2=0}={-2,-1},
(2)由(1)得,A∩B={-2},A∪B={-2,-1,3}.

点评 本题考查了交集、并集的混合运算,一元二次方程的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.己知椭圆l0x2+5y2=27,过定点C(2,0)的两条互相垂直的动直线分别交椭圆于P,Q两点,F1,F2分别为左、右焦点,O为坐标原点.
(1)求向量|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的最值;
(2)当向量$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$互相垂直时,求P,Q两点所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设全集为R,A={x|x<2},B={x|x≥-3}.
(Ⅰ)求∁R(A∩B);∁R(A∪B);(∁RA)∪(∁RB);(∁RA)∩(∁RB);
(Ⅱ)由(Ⅰ)你能发现怎样的结论,请写出来.(不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.阅读下面的程序框图,运行相应的程序,输出的结果为(  )
A.$\frac{21}{13}$B.$\frac{13}{8}$C.$\frac{34}{21}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{{{e^x}•{x^2}}}{{{e^{2x}}-1}}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某企业根据市场需求,决定生产一款大型设备,生产这种设备的年固定成本为500万元,每生产x台,需投入成本C(x)万元,若年产量不足80台时,C(x)=$\frac{1}{2}$x2+40x万元,若年产量等于或超过80台时,C(x)=101x+$\frac{8100}{x}$-2180万元,每台设备售价为100万元,通过市场分析该企业生产的这种设备能全部售完.
(1)求年利润y(万元)关于年产量x(台)的函数关系;
(2)年产量为多少台时,该企业的设备的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z的对应点为(1,1),则$\frac{2}{z}$-z2=(  )
A.-1-3iB.-1+3iC.1-3iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x||x-1|<2},Z为整数集,则集合A∩Z的子集个数为8.

查看答案和解析>>

同步练习册答案