精英家教网 > 高中数学 > 题目详情
2.己知椭圆l0x2+5y2=27,过定点C(2,0)的两条互相垂直的动直线分别交椭圆于P,Q两点,F1,F2分别为左、右焦点,O为坐标原点.
(1)求向量|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的最值;
(2)当向量$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$互相垂直时,求P,Q两点所在直线方程.

分析 (1)由题意可知:椭圆$\frac{{x}^{2}}{\frac{27}{10}}+\frac{{y}^{2}}{\frac{27}{5}}=1$,则椭圆的焦点在y轴上,a=$\frac{3\sqrt{15}}{5}$,b=$\frac{3\sqrt{30}}{10}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{\frac{27}{5}-\frac{27}{10}}$=$\frac{3\sqrt{30}}{10}$,由$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,则丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨=2丨$\overrightarrow{PO}$丨,因此当P位于短轴顶点时,取最小值为:丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨min=2b=$\frac{3\sqrt{30}}{5}$;当P为长轴顶点时,取最大值为:丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨max=2a=$\frac{6\sqrt{15}}{5}$;
(2)由$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$=2$\overrightarrow{QO}$,由向量$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$互相垂直,$\overrightarrow{PO}$⊥$\overrightarrow{QO}$,则x1•x2+y1•y2=0,由丨PQ丨的中点为M(x0,y0),则丨MC丨=丨MO丨,则设直线PQ的方程为y=kx+b,代入椭圆方程,由韦达定理求得x1+x2=-$\frac{10kb}{10+5{k}^{2}}$,x1•x2=$\frac{5{b}^{2}-27}{10+5{k}^{2}}$,由PC⊥QC,则x1+x2=2x0=2,求得b=-$\frac{2+{k}^{2}}{k}$,y1•y2=(kx1+b)(kx2+b)=$\frac{-27{k}^{2}+10{b}^{2}}{10+5{b}^{2}}$,代入即可求得k和b的值,求得P,Q两点所在直线方程.

解答 解:椭圆l0x2+5y2=27,则$\frac{{x}^{2}}{\frac{27}{10}}+\frac{{y}^{2}}{\frac{27}{5}}=1$,则椭圆的焦点在y轴上,
∴a=$\frac{3\sqrt{15}}{5}$,b=$\frac{3\sqrt{30}}{10}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{\frac{27}{5}-\frac{27}{10}}$=$\frac{3\sqrt{30}}{10}$,
由题意可知:O为△PF1F2,F1F2上的中点,
∴$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,则丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨=2丨$\overrightarrow{PO}$丨
∴当P位于短轴顶点时,丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨取最小值,最小值为:丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨min=2b=$\frac{3\sqrt{30}}{5}$;
当P为长轴顶点时,丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨取最大值,最大值为:丨$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$丨max=2a=$\frac{6\sqrt{15}}{5}$;
向量|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的最小值为$\frac{3\sqrt{30}}{5}$,最大值$\frac{3\sqrt{30}}{5}$;
(2)由(1)可知:$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$=2$\overrightarrow{QO}$,
设P(x1,y1),Q(x2,y2),
由向量$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{1}}$+$\overrightarrow{Q{F}_{2}}$互相垂直,
∴$\overrightarrow{PO}$⊥$\overrightarrow{QO}$,
∴x1•x2+y1•y2=0,
∴丨PQ丨为Rt△POQ与Rt△PCQ的公共边,
设丨PQ丨的中点为M(x0,y0),则丨MC丨=丨MO丨,
设直线PQ的方程为:y=kx+b,
则:$\left\{\begin{array}{l}{y=kx+b}\\{10{x}^{2}+5{y}^{2}=27}\end{array}\right.$,整理得:(10+5k2)x2+10kbx+5b2-27=0,
由△=(10kb)2-4(10+5k2)(5b2-27)=-27k2+10b2-54>0,则27k2-10b2+54<0,
由韦达定理可知:x1+x2=-$\frac{10kb}{10+5{k}^{2}}$,x1•x2=$\frac{5{b}^{2}-27}{10+5{k}^{2}}$,
由PC⊥QC,则x1+x2=2x0=2,
解得:b=-$\frac{2+{k}^{2}}{k}$,
y1•y2=(kx1+b)(kx2+b)=k2x1•x2+kb(x1+x2)+b2=$\frac{-27{k}^{2}+10{b}^{2}}{10+5{b}^{2}}$,
由x1•x2+y1•y2=0,整理得:12k4-33k2+60=0,
解得:k=±2,
∴$\left\{\begin{array}{l}{k=2}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{k=-2}\\{b=3}\end{array}\right.$,
满足27k2-10b2+54<0,
∴直线PQ的方程:2x-y-3=0或2x+y-3=0.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查向量数量积的坐标运算,考查计算能力,向量垂直及中点坐标公式,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.圆O:x2+y2=4内有一点P(-1,1).
(1)当弦AB被点P平分时,求出直线AB的方程;
(2)直线l1和l2为圆O的两条动切线,且l1⊥l2,垂足为Q.求P,Q中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,现有函数f(x)=ex+mx是区间[0,1]上的“平均值函数”,则实数m的取值范围是(  )
A.(-∞,2-e]B.(-∞,2-e)C.[2-e,+∞)D.(2-e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一个正倒立的圆锥容器中装有一定的水,现放入一个小球后,水面恰好淹过小球(水面与小球相切),且圆锥的轴截面是等边三角形,则容器中水的体积与小球的体积之比为5:4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求y=3x+$\frac{4}{x}$(x<0)的最大值,并求y取最大值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内的一组基底,则下列四组向量不能作为平面向量的基底的是(  )
A.$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在(-1,1)上的函数f(x)满足下列条件:
①对任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+x+y}$);
②当x∈(-1,0)时,有f(x)>0,求证:
(1)f(x)是奇函数;
(2)f(x)是单调递减函数;
(3)f($\frac{1}{11}$)+f($\frac{1}{19}$)+…+f($\frac{1}{{{n^2}+5n+5}}$)>f($\frac{1}{3}$),其中n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个说法:
(1)函数f(x)=$\frac{1}{x}$的减区间为(-∞,0)∪(0,+∞)
(2)M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为1或-1;
(3)y=x2-2|x|-3的递增区间为[1,+∞);
(4)集合A={x|-1≤x≤7},B={x|k+1≤x≤2k-1},则能使A∪B=A的实数k的取值范围为(-∞,4].
其中说法正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列举法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

同步练习册答案