精英家教网 > 高中数学 > 题目详情
1.在复平面内,复数z的对应点为(1,1),则$\frac{2}{z}$-z2=(  )
A.-1-3iB.-1+3iC.1-3iD.1+3i

分析 利用复数的除法以及乘方运算化简求解即可.

解答 解:,复数z的对应点为(1,1),可得z=1+i,
则$\frac{2}{z}$-z2=$\frac{2}{1+i}-(1+i)^{2}$=$\frac{2(1-i)}{(1+i)(1-i)}$-2i=1-3i.
故选:C.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列四个说法:
(1)函数f(x)=$\frac{1}{x}$的减区间为(-∞,0)∪(0,+∞)
(2)M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为1或-1;
(3)y=x2-2|x|-3的递增区间为[1,+∞);
(4)集合A={x|-1≤x≤7},B={x|k+1≤x≤2k-1},则能使A∪B=A的实数k的取值范围为(-∞,4].
其中说法正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列举法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12-4n-4,n∈N*,且a2,a4,a8构成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an+$\frac{1}{{2}^{{a}_{n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线2x-y-3=0的倾斜角为θ,则sin2θ的值是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正方体ABCD-A′B′C′D′中,P是A′D的中点,Q是B′D′的中点,判断直线PQ与平面AA′B′B的位置关系,并利用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\left\{\begin{array}{l}\frac{1}{6}({x^2}+5x),0≤x<3\\ 10-2x,3≤x≤5\end{array}\right.,?m,n∈[{0,5}],m<n$,使得f(x)在定义域[m,n]上的值域为[m,n],则这样的实数对(m,n)共有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\frac{1}{{1+{x^2}}}$,则$f(2016)+f(2015)+…+f(2)+f(\frac{1}{2})+…+f(\frac{1}{2015})$$+f(\frac{1}{2016})$的值为(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,Sn是{an}的前n项和且Sn=2n-an
(1)求a1,an
(2)若数列{bn}中,bn=n(2-n)(an-2),且对任意正整数n,都有${b_n}+t≤2{t^2}$,求t的取值范围.

查看答案和解析>>

同步练习册答案