精英家教网 > 高中数学 > 题目详情
16.已知直线2x-y-3=0的倾斜角为θ,则sin2θ的值是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{2}{5}$

分析 首先根据直线斜率求出θ的正切值,然后利用二倍角的正弦函数公式,同角三角函数基本关系式化简所求即可计算得解.

解答 解:由直线2x-y-3=0方程,得直线2x-y-3=0的斜率k=2,
∵直线2x-y-3=0的倾斜角为θ,
∴tanθ=2,
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{1+ta{n}^{2}θ}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$.
故选:C.

点评 本题考查直线斜率的意义,同角三角函数关系,倍角公式等三角恒等变换知识的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知偶函数f(x)在区间[0,+∞)上是增函数,则f(-1)与f(2)的大小关系是(  )
A.f(-1)≥f(2)B.f(-1)≤f(2)C.f(-1)>f(2)D.f(-1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某企业根据市场需求,决定生产一款大型设备,生产这种设备的年固定成本为500万元,每生产x台,需投入成本C(x)万元,若年产量不足80台时,C(x)=$\frac{1}{2}$x2+40x万元,若年产量等于或超过80台时,C(x)=101x+$\frac{8100}{x}$-2180万元,每台设备售价为100万元,通过市场分析该企业生产的这种设备能全部售完.
(1)求年利润y(万元)关于年产量x(台)的函数关系;
(2)年产量为多少台时,该企业的设备的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2-x+1,g(x)=x+4,h(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$,若h(x)≥m恒成立,则m的最大值为(  )
A.3B.4C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z的对应点为(1,1),则$\frac{2}{z}$-z2=(  )
A.-1-3iB.-1+3iC.1-3iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是(  )
A.$y=\sqrt{2}x$B.$y=\sqrt{3}x$C.y=2xD.y=4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-3.
(1)求BC的长;
(2)求sin(C+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,则sinα的值为$\frac{1}{3}$;$tan\frac{α}{2}$的值为3-2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案