精英家教网 > 高中数学 > 题目详情
11.已知f(x)=x2-x+1,g(x)=x+4,h(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$,若h(x)≥m恒成立,则m的最大值为(  )
A.3B.4C.1D.0

分析 化简函数的解析式,求出函数的最值,然后求解m的最大值.

解答 解:f(x)=x2-x+1,g(x)=x+4,h(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$,
可得h(x)=$\left\{\begin{array}{l}{{x}^{2}-x+1,x≤-1或x≥3}\\{x+4,-1<x<3}\end{array}\right.$,函数的最小值为:h(-1)=3.
h(x)≥m恒成立,则m的最大值为3.
故选:A.

点评 本题考查分段函数的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{{\begin{array}{l}{{a^x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}}$是R上的增函数,则实数a的取值范围(  )
A.[4,8 )B.(4,8)C.(1,8)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|-3≤x<2},B={x|x≥m},且A⊆B,则实数m的取值范围是(  )
A.{m|m≥-3}B.{m|m≤-3}C.{m|m≤2}D.{m|m≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C的对边分别是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面积为a2sinB,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC中,角A,B,C所对的边分别为a,b,c,D是BC的中点,且AD=$\sqrt{10}$,若S△ABC=4,b>c,且$\frac{b-csinA}{a}$=cosC,则B的值为(  )
A.60°B.120°C.45°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线2x-y-3=0的倾斜角为θ,则sin2θ的值是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,过P的直线分别交DA的延长线,AB,DC于M,E,N,若$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,则2m+3n的最小值是(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.$\frac{24}{5}$D.$\frac{48}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+3(a∈R),f(ln(log25))=5,则f(ln(log52))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$({x+\frac{a}{x}}){({2x-\frac{1}{x}})^5}$展开式中,各项系数之和为3,则展开式中的常数项为(  )
A.-120B.-80C.80D.120

查看答案和解析>>

同步练习册答案