| A. | $\frac{6}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{24}{5}$ | D. | $\frac{48}{5}$ |
分析 梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,求出m,n的关系,即可利用基本不等式求解2m+3n的最小值.
解答 解:矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,
可得:$AP=\frac{2}{5}\sqrt{5}$,$PC=\frac{3}{5}\sqrt{5}$,
由梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,
可得:$\frac{2-2n}{2n}×\frac{m}{m-1}×\frac{\frac{2}{5}\sqrt{5}}{\frac{3}{5}\sqrt{5}}=1$,即$(\frac{1}{n}-1)×\frac{m}{m-1}×\frac{2}{3}=1$,
⇒2m+3n=5mn,
2m+3n≥$2\sqrt{6mn}$,
解的:mn$≥\frac{24}{25}$.
当且仅当2m=3n时取等号,
∴2m+3n=5mn≥$\frac{24}{5}$
故选C.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{2}x$ | B. | $y=\sqrt{3}x$ | C. | y=2x | D. | y=4x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 正三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com