精英家教网 > 高中数学 > 题目详情
3.如图,矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,过P的直线分别交DA的延长线,AB,DC于M,E,N,若$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,则2m+3n的最小值是(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.$\frac{24}{5}$D.$\frac{48}{5}$

分析 梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,求出m,n的关系,即可利用基本不等式求解2m+3n的最小值.

解答 解:矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,
可得:$AP=\frac{2}{5}\sqrt{5}$,$PC=\frac{3}{5}\sqrt{5}$,
由梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,
可得:$\frac{2-2n}{2n}×\frac{m}{m-1}×\frac{\frac{2}{5}\sqrt{5}}{\frac{3}{5}\sqrt{5}}=1$,即$(\frac{1}{n}-1)×\frac{m}{m-1}×\frac{2}{3}=1$,
⇒2m+3n=5mn,
2m+3n≥$2\sqrt{6mn}$,
解的:mn$≥\frac{24}{25}$.
当且仅当2m=3n时取等号,
∴2m+3n=5mn≥$\frac{24}{5}$
故选C.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知集合A={a,b},B={a,b,c,d,e},满足条件A⊆M⊆B的集合M的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2-x+1,g(x)=x+4,h(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$,若h(x)≥m恒成立,则m的最大值为(  )
A.3B.4C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为$\frac{243}{16}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是(  )
A.$y=\sqrt{2}x$B.$y=\sqrt{3}x$C.y=2xD.y=4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l:x+$\sqrt{3}$y+6=0,则直线的倾斜角α等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,$\overrightarrow{AB}•(\overrightarrow{AB}-\overrightarrow{AC})=0$,则△ABC的形状是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(c,0)为椭圆右焦点,A为椭圆左顶点,且b2=ac,P为椭圆上不同于A的点,则使$\overrightarrow{PA}$•$\overrightarrow{PF}$=0的点P的个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

同步练习册答案