精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.

分析 (1)由当a=2时,f(x)=x3+2x2-4x-1,求导:f′(x)=3x2+4x2-4=(3x-2)(x+2),f′(x)=0,解得:x=$\frac{2}{3}$,x=-2,令f′(x)>0,求得函数的单调递增区间,令f′(x)<0,求得函数的单调递减区间;
(2)由题意可知:f(x)在区间[1,+∞)上的最小值小于等于0,求导f′(x)=3x2+2ax2-22=(3x-a)(x+a),令f′(x)=0,解得:x1=$\frac{a}{3}$>0,x2=-a<0,①当$\frac{a}{3}$≤1,即a≤3时,由函数的单调性可知:当x=1时取最小值,即f(1)≤0,即可求得a的取值范围;当$\frac{a}{3}$>1,即a>3时,则当x=$\frac{a}{3}$时,取最小值,f($\frac{a}{3}$)=$\frac{{a}^{3}}{27}$+$\frac{{a}^{3}}{9}$-$\frac{{a}^{3}}{3}$-1≤0,即可求得实数a的取值范围.

解答 解:(1)当a=2时,函数f(x)=x3+2x2-4x-1,
求导:f′(x)=3x2+4x2-4=(3x-2)(x+2),
令f′(x)=0,解得:x=$\frac{2}{3}$,x=-2,
由f′(x)>0,解得:x>$\frac{2}{3}$或x<-2,
由f′(x)<0,解得:-2<x<$\frac{2}{3}$,
∴函数f(x)的单调递减区间为(-2,$\frac{2}{3}$),单调递增区间(-∞,-2),($\frac{2}{3}$,+∞);
(2)要使f(x)≤0在[1,+∞)上有解,只要f(x)在区间[1,+∞)上的最小值小于等于0,
由f′(x)=3x2+2ax2-22=(3x-a)(x+a),
令f′(x)=0,解得:x1=$\frac{a}{3}$>0,x2=-a<0,
①当$\frac{a}{3}$≤1,即a≤3时,f(x)在区间[1,+∞)上单调递增,
∴f(x)在[1,+∞)上的最小值为f(1),
由f(1)≤0,即1+a-a2-1≤0,整理得:a2-a≥0,
解得:a≥1或a≤0,
∴1≤a≤3.
②当$\frac{a}{3}$>1,即a>3时,f(x)在区间[1,$\frac{a}{3}$]上单调递减,在[$\frac{a}{3}$,+∞)上单调递增,
∴f(x)在[1,+∞)上最小值为f($\frac{a}{3}$),
由f($\frac{a}{3}$)=$\frac{{a}^{3}}{27}$+$\frac{{a}^{3}}{9}$-$\frac{{a}^{3}}{3}$-1≤0,解得:a≥-$\root{3}{\frac{27}{5}}$,
∴a>3.
综上可知,实数a的取值范围是[1,+∞).

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及最值,考查导数与不等式的综合应用,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{{5\sqrt{3}}}{2}$(x∈R).
(1)求f(x)的周期和最值;
(2)求f(x)的单调增区间;
(3)写出f(x)的图象的对称轴方程和对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\frac{x}{{\sqrt{a{x^2}+ax+1}}}$的定义域为R,则实数a的取值范围是0≤a<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|-3≤x<2},B={x|x≥m},且A⊆B,则实数m的取值范围是(  )
A.{m|m≥-3}B.{m|m≤-3}C.{m|m≤2}D.{m|m≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an+1=2an,且a1、a2+1、a3成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记数列{log2an}的前n项和为Sn,求使不等式Sn>45成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C的对边分别是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面积为a2sinB,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC中,角A,B,C所对的边分别为a,b,c,D是BC的中点,且AD=$\sqrt{10}$,若S△ABC=4,b>c,且$\frac{b-csinA}{a}$=cosC,则B的值为(  )
A.60°B.120°C.45°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,过P的直线分别交DA的延长线,AB,DC于M,E,N,若$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,则2m+3n的最小值是(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.$\frac{24}{5}$D.$\frac{48}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值.

查看答案和解析>>

同步练习册答案