精英家教网 > 高中数学 > 题目详情
6.已知△ABC中,角A,B,C所对的边分别为a,b,c,D是BC的中点,且AD=$\sqrt{10}$,若S△ABC=4,b>c,且$\frac{b-csinA}{a}$=cosC,则B的值为(  )
A.60°B.120°C.45°D.90°

分析 由正弦定理化简已知等式可得:sinB=sinAcosC+sinCsinA,结合三角形内角和定理,两角和的正弦函数公式及sinC≠0,可得sinA=cosA,进而可求A=45°,cosC=$\frac{2b-\sqrt{2}c}{2a}$,利用三角形面积公式可求bc=8$\sqrt{2}$,利用余弦定理可得:b2+c2=24,联立解得b,c的值,利用等腰三角形的性质可求B的值.

解答 解:∵$\frac{b-csinA}{a}$=cosC,可得:b=acosC+csinA,
由正弦定理可得:sinB=sinAcosC+sinCsinA,
又∵sinB=sin(A+C)=sinAcosC+sinCcosA,
∴sinCsinA=sinCcosA,
∵sinC≠0,
∴sinA=cosA,可得:A=45°,可得:cosC=$\frac{2b-\sqrt{2}c}{2a}$,
∵S△ABC=$\frac{1}{2}$bcsinA=4,可得:bc=8$\sqrt{2}$,①
∵cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴可得:$\frac{2b-\sqrt{2}c}{2a}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,可得:b2+c2=24,②
∴由①②解得:$\left\{\begin{array}{l}{c=4}\\{b=2\sqrt{2}}\end{array}\right.$(b>c,故舍去),或$\left\{\begin{array}{l}{c=2\sqrt{2}}\\{b=4}\end{array}\right.$,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=2$\sqrt{2}$=c,
∴A=C=45°,可得:B=180°-A-B=90°.
故选:D.

点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,三角形面积公式,余弦定理,等腰三角形的性质在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn,.
(1)求a1的值并求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x≤0\\-{x^2},x>0.\end{array}$
(1)求f[f(2)]并判断函数f(x)的奇偶性;
(2)若对任意t∈[1,2],f(t2-2t)+f(k-2t2)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某企业为解决困难职工的住房问题,决定分批建设保障性住房供给困难职工,首批计划用100万元购买一块土地,该土地可以建造每层1000平方米的楼房一幢,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元,已知建筑第1层楼房时,每平方米的建筑费用为920元.为了使该幢楼房每平方米的平均费用最低(费用包括建筑费用和购地费用),应把楼房建成几层?此时平均费用为每平方米多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2-x+1,g(x)=x+4,h(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$,若h(x)≥m恒成立,则m的最大值为(  )
A.3B.4C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为$\frac{243}{16}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l:x+$\sqrt{3}$y+6=0,则直线的倾斜角α等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x+2ax+b,且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$.
(Ⅰ)求实数a,b的值并判断函数f(x)的奇偶性;
(Ⅱ)判断函数f(x)在[0,+∞)上的单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案