精英家教网 > 高中数学 > 题目详情
11.数列{an}中,Sn是{an}的前n项和且Sn=2n-an
(1)求a1,an
(2)若数列{bn}中,bn=n(2-n)(an-2),且对任意正整数n,都有${b_n}+t≤2{t^2}$,求t的取值范围.

分析 (1)利用数列递推关系、等比数列的通项公式即可得出.
(2)利用数列的单调性即可得出.

解答 解:(1)设n=1时,a1=1,
由已知Sn=2n-an…①,得Sn+1=2n+2-an+1…②
②式减①式得${a_{n+1}}=\frac{{{a_n}+2}}{2}$,
∴${a_{n+1}}-2=\frac{1}{2}({{a_n}-2})$,
∴{an-2}是-1为首项,$\frac{1}{2}$为公比的等比数列.
∴an-2=-$(\frac{1}{2})^{n-1}$,${a_n}=2-{({\frac{1}{2}})^{n-1}}$.
(2)${b_n}=\frac{{n({n-2})}}{{{2^{n-1}}}},{b_{n+1}}-{b_n}=\frac{{-{n^2}+4n-1}}{2^n}$,
n≤3时,bn+1-bn>0,n≥4时,bn+1-bn<0,(bnmax=b4=1.
∴1+t≤2t2,2t2-t-1≥0;
t≥1或$t≤-\frac{1}{2}$.

点评 本题考查了数列递推关系、等比数列与等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z的对应点为(1,1),则$\frac{2}{z}$-z2=(  )
A.-1-3iB.-1+3iC.1-3iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x||x-1|<2},Z为整数集,则集合A∩Z的子集个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:(x+2)(x+1)<0命题$q:x+\frac{1}{x}∈[{-\frac{5}{2},-2}]$,则下列说法正确的是(  )
A.p是q的充要条件B.p是q的必要不充分条件
C.p是q的充分不必要条件D.是q的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,则sinα的值为$\frac{1}{3}$;$tan\frac{α}{2}$的值为3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(-3)=0,则不等式x•f(x)≥0的解集是(  )
A.{x|-3≤x≤3}B.{x|-3≤x<0或0<x≤3}C.{x|x≤-3或x≥3}D.{x|x≤-3或x=0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.A={x|x是小于9的质数},B={x|x是小于9的正奇数},则A∩B的子集个数是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,$f(x)=2-{({\frac{1}{2}})^x}$,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{4}})$C.$({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x>0,则函数${y_1}=-{a^{-x}}$与y2=logax(a>0,且a≠1)在同一坐标系上的部分图象只可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案