分析 (1)利用数列递推关系、等比数列的通项公式即可得出.
(2)利用数列的单调性即可得出.
解答 解:(1)设n=1时,a1=1,
由已知Sn=2n-an…①,得Sn+1=2n+2-an+1…②
②式减①式得${a_{n+1}}=\frac{{{a_n}+2}}{2}$,
∴${a_{n+1}}-2=\frac{1}{2}({{a_n}-2})$,
∴{an-2}是-1为首项,$\frac{1}{2}$为公比的等比数列.
∴an-2=-$(\frac{1}{2})^{n-1}$,${a_n}=2-{({\frac{1}{2}})^{n-1}}$.
(2)${b_n}=\frac{{n({n-2})}}{{{2^{n-1}}}},{b_{n+1}}-{b_n}=\frac{{-{n^2}+4n-1}}{2^n}$,
n≤3时,bn+1-bn>0,n≥4时,bn+1-bn<0,(bn)max=b4=1.
∴1+t≤2t2,2t2-t-1≥0;
t≥1或$t≤-\frac{1}{2}$.
点评 本题考查了数列递推关系、等比数列与等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | p是q的充要条件 | B. | p是q的必要不充分条件 | ||
| C. | p是q的充分不必要条件 | D. | 是q的既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3≤x≤3} | B. | {x|-3≤x<0或0<x≤3} | C. | {x|x≤-3或x≥3} | D. | {x|x≤-3或x=0或x≥3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{1}{2}})$ | B. | $({0,\frac{{\sqrt{2}}}{4}})$ | C. | $({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$ | D. | $({\frac{1}{2},1})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com