四棱锥底面是平行四边形,面面,,,分别为的中点.
(1)求证:
(2)求证:
(3)求二面角的余弦值.
(1)见解析;(2)见解析;(3).
解析试题分析:(1)根据已有中点,, 推出,得到,即得证;
(2)根据,由余弦定理得出
进一步得出根据得证.
上述两小题,关键是要注意表述的规范性.
(3)解答本小题可利用“几何法”、“向量法”,应用“几何法”,要注意做好“作图,证明,计算”等工作.利用“向量法”,则要注意计算准确.
试题解析:(1) 1分
,所以 2分
4分
(2) ①
中,由余弦定理,所以,, 6分
② 7分
由 ①②可知,
9分
(3)取 的中点,
是二面角
的平面角 11分
由(2)知
即二面角的余弦值为 13分
解法二 (1)
所以
建系令
,
因为平面PAB的法向量
(2)
(3) 设平面PAD的法向量为 ,
令所以
平面PAB的法向量
,即二面角的余弦值为
考点:平行关系,垂直关系,空间的角的计算.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角。
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com