精英家教网 > 高中数学 > 题目详情

如图,已知在侧棱垂直于底面的三棱柱中,,且,点中点.

(1)求证:平面⊥平面
(2)若直线与平面所成角的正弦值为
求三棱锥的体积.

(1)证明详见解析(2)

解析试题分析:(1)由平面可证,由已知条件可得,,所以在平面,然后根据平面与平面垂直的判定定理可得平面⊥平面 .(2) 先求三角形的面积和的值,然后再根据棱锥的体积公式求解即可.
试题解析:(1)证明:平面,平面,,又且点中点.平面,又平面
平面⊥平面                6分
(2)由(1)可知,所以AC1与平面A1ABB1所成的角为,在,由,
=      12分
考点:1.直棱柱的性质和平面与平面垂直的判定;2.棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,菱形ABCD中,平面ABCD,平面ABCD,

(1)求证:平面BDE;
(2)求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,且满足.

(1)求证:
(2)求点的距离;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.

(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的几何体中,平面为正方形,平面为等腰梯形,.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是(     )

A.
B.三棱锥的体积为定值
C.二面角的大小为定值
D.异面直线所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,分别是棱的中点,点在棱上,已知

(1)求证:平面
(2)设点在棱上,当为何值时,平面平面

查看答案和解析>>

同步练习册答案