精英家教网 > 高中数学 > 题目详情
12.已知正方形ABCD所在平面与正方形ABEF所在平面互相垂直,M为AC上一点,N为BF 上一点,且AM=FN.
(1)求证:MN∥平面CBE;
(2)求证:MN⊥AB.

分析 (1)先由 $\frac{MG}{AB}$=$\frac{MC}{NC}$=$\frac{NB}{EF}$得到MG∥NH且MG=NG,得出MNHG为平行四边形,从而求证MN∥GH,由线面平行的判定定理证得MN∥面BEC;
(2)由AB⊥BC,AB⊥BE,结合线面垂直的判定定理证出AB⊥面BEC,从而有AB⊥GH,再由垂直于平行线中的一条,则垂直于另一条,得到MN⊥AB.

解答 证明:(1)如图示:
÷
在平面ABC中,作MG∥AB,在平面BFE中,作NH∥EF,
连接GH,∵AM=FN∴MC=NB,
∵$\frac{MG}{AB}$=$\frac{MC}{NC}$=$\frac{NB}{EF}$,∴MG∥NH且MG=NG,
∴MNHG为平行四边形,∴MN∥GH,
又∵GH⊆面BEC,MN?面BEC,
∴MN∥面BEC;
(2)∵AB⊥BC,AB⊥BE,
∴AB⊥面BEC,
∵GH⊆面GEC,
∴AB⊥GH,
∵MN∥GH,
∴MN⊥AB.

点评 本题主要通过平面图形中的相似性转化线线平行,进而转化为线面平行来考查线面平行的判定定理,以及线面垂直的判定和培养学生平面和空间的转化及建模能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=xcosx+sinx的导数f′(x)=2cosx-xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正△ABC中,点D、E分别在边AC、AB上,且$AD=\frac{1}{3}AC$,$AE=\frac{2}{3}AB$,BD、CE相交于点F.
(Ⅰ)求证:A、E、F、D四点共圆,并求∠BFC的大小;
(Ⅱ)求证:2BF•BD=CF•CE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,且c2=a2+b2-ab,则角C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某奶茶店为了促销,准备推出“掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢代金券”的活动,游戏规则如下:顾客每次消费后,可同时投掷两枚骰子一次,赢得一等奖、二等奖、三等奖和感谢奖四个等级的代金券,用于在以后来店消费中抵用现金.设事件A:“两连号”;事件B:“两个同点”;事件C:“同奇偶但不同点”.
①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;
②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖.请替该店定出各个等级奖依次对应的事件并求相应概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M的柱坐标为($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),则其直角坐标是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$过点$({2,\sqrt{3}})$,离心率为$\sqrt{2}$.
(1)求双曲线的标准方程和焦点坐标;
(2)已知点P在双曲线上,且∠F1PF2=90°,求点P到x轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(Ⅰ)${({0.027})^{\frac{1}{3}}}-{(\frac{1}{8})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}•{(1+\sqrt{5})^0}$
(Ⅱ)$\frac{1}{2}lg25+2lg\sqrt{2}-lg\sqrt{0.1}+{log_4}32$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i为虚数单位,则($\frac{1+i}{1-i}}$)2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步练习册答案