分析 (1)利用tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$,即可求解;
(2)先化简为$\frac{-2tanα}{ta{n}^{2}α+tanα-2}$,再代入计算即可.
解答 解:(1)∵tanα=2,
∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=-3;
(2)$\frac{cos(\frac{3π}{2}+2α)}{si{n}^{2}α+sinαcosα-cos2α-1}$=$\frac{-sin2α}{si{n}^{2}α+sinαcosα-2co{s}^{2}α}$=$\frac{-2tanα}{ta{n}^{2}α+tanα-2}$=$\frac{-4}{4+2-2}$=-1.
点评 本题考查和角的正切公式,考查同角三角函数的关系,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}1-{2}^{x},x≤1\\{2}^{x}-3,x>1\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{2}^{x}-3,x<1}\\{1-{2}^{x},x≥1}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{{2}^{x}-4,x≥1}\\{2-{2}^{x},x<1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{{4}^{x}-3,x<1}\\{1-{4}^{x},x≥1}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com