精英家教网 > 高中数学 > 题目详情
9.如图所示,AD是△ABC的中线,E是CA边的三等分点,BE交AD于点F,则AF:FD为(  ) 
A.4:1B.3:1C.2:1D.5:1

分析 要求AF:FD的比,需要添加平行线寻找与之相等的比.

解答 解:过D作DG∥AC交BE于G,∵D是BC的中点,则DG=$\frac{1}{2}$EC,
又AE=2EC,故AF:FD=AE:DG=2EC:$\frac{1}{2}$EC=4:1.
故选:A.

点评 本题考查三角形中位线的性质,考查平行线的性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax3-x2+x-5在(-∞,+∞)上既有极大值,也有极小值,则实数a的取值范围为(  )
A.a>$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a<$\frac{1}{3}$且a≠0D.a≤$\frac{1}{3}$且a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1、F2是椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的两个焦点,P是椭圆上任意一点
(1)∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积
(2)求|PF1||PF2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,S10=120,那么a2+a9的值是(  )
A.12B.24C.16D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知$α,β∈(\frac{3π}{4},π),sin(α+β)=-\frac{3}{5},sin(β-\frac{π}{4})=\frac{12}{13}$,求$cos(α+\frac{π}{4})$的值.
(2)求$sin{50}^{?}(1+\sqrt{3}tan{10}^{?})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果一扇形的弧长为2π cm,半径等于2cm,则扇形所对圆心角为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的前n项和为Sn,满足Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),a1=-$\frac{2}{3}$,Sn-$\frac{n+1}{n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.小于90°的角是锐角B.在△ABC中,若cosA=cosB,那么A=B
C.第二象限的角大于第一象限的角D.若角α与角β的终边相同,那么α=β

查看答案和解析>>

同步练习册答案