| A. | $\frac{1}{2017}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2015}{2016}$ |
分析 推导出{$\frac{1}{1-{a}_{n}}$}是首项为1,公差为1的等差数列,由此能求出a2017的值.
解答 解:∵数列{an}满足a1=0,$\frac{1}{1-{a}_{n}}$-$\frac{1}{1-{a}_{n-1}}$=1(n≥2,n∈N*),
∴$\frac{1}{{1-a}_{1}}$=1,
∴{$\frac{1}{1-{a}_{n}}$}是首项为1,公差为1的等差数列,
∴$\frac{1}{1-{a}_{n}}$=1+(n-1)=n,
∴$\frac{1}{1-{a}_{2017}}=2017$,
解得a2017=$\frac{2016}{2017}$.
故选:C.
点评 本题考查数列的第2016项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{15}-\frac{8}{15}i$ | B. | $\frac{9}{15}+\frac{8}{15}i$ | C. | $-\frac{9}{15}-\frac{8}{15}i$ | D. | $-\frac{9}{15}+\frac{8}{15}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{2}$个周期 | B. | 向右平移$\frac{π}{2}$个周期 | ||
| C. | 向左平移$\frac{π}{4}$个周期 | D. | 向右平移$\frac{π}{4}$个周期 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com