精英家教网 > 高中数学 > 题目详情
13.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且焦距为2$\sqrt{2}$,动弦AB平行于x轴,且|F1A|+|F1B|=4.
(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.

分析 (1)动弦AB平行于x轴,|F1B|=|F2A|,且|F1A|+|F1B|=4,可得|F2A|+|F1A|=4=2a,解得a.又2c=2$\sqrt{2}$,b2=a2-c2,解出即可得出.
(2))F1$(-\sqrt{2},0)$,F2$(\sqrt{2},0)$.设A(x0,y0),B(-x0,y0),P(m,n)(P≠A,B),$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{2}$=1,$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1.直线PA方程:y-n=$\frac{{y}_{0}-n}{{x}_{0}-m}$(x-m),可得:M坐标.同理可得:N坐标.再利用斜率计算公式进而得出.

解答 解:(1)∵动弦AB平行于x轴,∴|F1B|=|F2A|,且|F1A|+|F1B|=4,
∴|F2A|+|F1A|=4=2a,解得a=2.
又2c=2$\sqrt{2}$,解得c=$\sqrt{2}$.
∴b2=a2-c2=2.
∴$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(2))F1$(-\sqrt{2},0)$,F2$(\sqrt{2},0)$.
设A(x0,y0),B(-x0,y0),P(m,n)(P≠A,B),$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{2}$=1,$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1.
直线PA方程:y-n=$\frac{{y}_{0}-n}{{x}_{0}-m}$(x-m),可得:M$(0,\frac{n{x}_{0}-m{y}_{0}}{{x}_{0}-m})$.
直线PB方程:y-n=$\frac{{y}_{0}-n}{-{x}_{0}-m}$(x-m),可得:N$(0,\frac{n{x}_{0}+m{y}_{0}}{{x}_{0}+m})$.
∴k1=$\frac{n{x}_{0}-m{y}_{0}}{\sqrt{2}(m-{x}_{0})}$,k2=$\frac{n{x}_{0}+m{y}_{0}}{\sqrt{2}({x}_{0}+m)}$,
∴k1k2=$\frac{n{x}_{0}-m{y}_{0}}{\sqrt{2}(m-{x}_{0})}$×$\frac{n{x}_{0}+m{y}_{0}}{\sqrt{2}({x}_{0}+m)}$=$\frac{{n}^{2}{x}_{0}^{2}-{m}^{2}{y}_{0}^{2}}{2({m}^{2}-{x}_{0}^{2})}$=$\frac{(2-\frac{{m}^{2}}{2}){x}_{0}^{2}-{m}^{2}(2-\frac{{x}_{0}^{2}}{2})}{2({m}^{2}-{x}_{0}^{2})}$=-1为定值.

点评 本题考查了椭圆的定义标准方程及其性质、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={y|y=2x-1,x∈R},B={x|y=$\sqrt{x+1}$-log2(2-x)},则A∪B=(  )
A.(-1,2)B.[-1,2)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lg(x-a)的定义域为A,集合B={y|y=2x-1,x∈R}.
(1)若A=B,求实数a的值;
(2)若(∁RA)∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=\frac{sin2x}{{{e^{|x|}}}}$的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=xlnx,g(x)=x2-1.
(1)求证:当x≥1时,f(x)≤$\frac{1}{2}$g(x)
(2)若当x≥1时,f(x)-mg(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(x+1)lnx-a(x-1).
(1)若函数f(x)的图象与直线y=x-1相切,求a的值;
(2)当1<x<2时,求证:$\frac{1}{lnx}-\frac{1}{ln(x-1)}<\frac{1}{(x-1)(2-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)如图1,矩形ABCD中AB=1,AD>1且AD长不定,将△BCE沿CE折起,使得折起后点B落到AD边上,设∠BCE=θ,CE=L,求L关于θ的函数关系式并求L的最小值.
(2)如图2,矩形ABCD中AB=1.将矩形折起,使得点B与点F重合,当点F取遍CD边上每一个点时,得到的每一条折痕都与边AD、CB相交,求边AD长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2016,则不等式exf(x)>ex+2015(其中e为自然对数的底数)的解集为{x丨x>0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3.

查看答案和解析>>

同步练习册答案