精英家教网 > 高中数学 > 题目详情
已知α是三角形的一个内角,且sinα+cosα=
2
3
,那么这个三角形的形状为
 
考点:三角形的形状判断,两角和与差的正弦函数
专题:计算题,解三角形
分析:把所给的等式两边平方,得2sinαcosα=-
5
9
<0,在三角形中,只能cosα<0,只有钝角cosα<0,故α为钝角,三角形形状得判.
解答: 解:∵(sinα+cosα)2=
4
9
,∴2sinαcosα=-
5
9

∵α是三角形的一个内角,则sinα>0,
∴cosα<0,
∴α为钝角,∴这个三角形为钝角三角形.
故答案为:钝角三角形.
点评:把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以坐标原点O为圆心的圆被直线:x-
3
y+4=0截得的弦长为2
3

(Ⅰ)求圆O的方程;
(Ⅱ)若斜率为2的直线l与圆O相交于A,B两点,且点D(-1,0)在以AB为直径的圆的内部,求直线L在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
ax2+ax+3
的定义域为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-2x-ln(x+1)2
(1)求f(x)的单调递增区间;
(2)若函数F(x)=f(x)-x2+3x+a在[
1
2
,2]上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项都是正数,前n项和是Sn,且点(an,2Sn)在函数y=x2+x的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
2Sn
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的最大值、最小值,并求使函数取得最大值、最小值的x的集合:
(Ⅰ)y=3-2cosx;(Ⅱ)y=2sin(
1
2
x-
π
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域和值域;
(2)设F(x)=
a
2
•[f2(x)-2]+f(x)(a为实数),记函数F(x)在a<0时的最大值g(a),若-m2+2tm+
2
≤g(a)对a<0所有的实数a及t∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试用不等式组表示由直线x+y+2=0,x+2y+1=0,2x+y+1=0围成的三角形区域(包括边界)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求关于x的二次函数y=x2-2tx+1在-1≤x≤1上的最大值(t为常数).

查看答案和解析>>

同步练习册答案