精英家教网 > 高中数学 > 题目详情
12.已知f(x)=2$\sqrt{3}$sinxcosx-2cos2x+1.
(1)求函数f(x)取最大值时x的取值集合;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,c=$\sqrt{3}$,求△ABC面积的最大值.

分析 (1)由二倍角公式及辅助角公式求得f(x),利用正弦函数的性质,即可求得f(x)的最大值;
(2)由(1),求得C,利用余弦定理及基本不等式的性质,即可求得△ABC面积的最大值.

解答 解:(1)由题意,$f(x)=2\sqrt{3}sinxcosx-2{cos^2}x+1$=$\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$,
当f(x)取最大值时,即$sin(2x-\frac{π}{6})=1$,此时$2x-\frac{π}{6}=2kπ+\frac{π}{2}$(k∈Z),
所以x的取值集合为$\{x|x=kπ+\frac{π}{3},k∈Z\}$.
(2)因f(C)=2,由(1)得$sin(2C-\frac{π}{6})=1$,又0<C<π,
即$-\frac{π}{6}<2C-\frac{π}{6}<\frac{11π}{6}$,所以$2C-\frac{π}{6}=\frac{π}{2}$,解得$C=\frac{π}{3}$,
在△ABC中,由余弦定理c2=a2+b2-2abcosC,
得3=a2+b2-ab≥ab,所以${S_{△ABC}}=\frac{1}{2}absinC≤\frac{{3\sqrt{3}}}{4}$,
当且仅当a=b,$C=\frac{π}{3}$,即△ABC为等边三角形时不等式取等号.
故△ABC面积的最大值为$\frac{{3\sqrt{3}}}{4}$.

点评 本题考查三角函数恒等变换,三角函数的性质,余弦定理及基本不等式的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,a15+a16+a17=-45,a9=-36,Sn为其前n项和.
(1)求Sn的最小值,并求出相应的n值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点.点P在以A为圆心,AD为半径的圆弧$\widehat{DE}$上运动(如图所示),若 $\overrightarrow{AP}$=λ $\overrightarrow{ED}$+μ $\overrightarrow{AF}$,其中λ,μ∈R.则$\frac{2λ}{μ}$的取值范围是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,∠A=60°,AC=3,面积为$\frac{{3\sqrt{3}}}{2}$,那么BC的长度为(  )
A.$\sqrt{7}$B.3C.2$\sqrt{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将函数f(x)=$\frac{3}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x的图象向左平移m(m>0)单位后所得的图象关于y轴对称,则m的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为43;若采用分层抽样,40-50岁年龄段应抽取12人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列3个命题:
①回归直线$\widehat{y}$=bx+a恒过样本点的中心($\overline{x}$,$\overline{y}$),且至少过一个样本点
②设a∈R,“a>1”是“$\frac{1}{a}$<1”的充要条件
③“存在x0∈R,使得x${\;}_{0}^{2}$+x0+1<0”的否定是“对任意的x∈R,均有x2+x+1<0”
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,
(1)通过计算可得尖头几碗?
(2)若设每层灯碗数构成一个数列{an}(n∈n*),求数列{n•an}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C所对的边,且3cosBcosC+1=3sinBsinC+cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案