精英家教网 > 高中数学 > 题目详情
4.已知△ABC是非等腰三角形,设P(cosA,sinA),Q(cosB,sinB),R(cosC,sinC),则△PQR的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不确定

分析 根据两点间的距离公式求出对应的线段长度即可得到结论.

解答 解:易知这三个点都在单位圆上,而且都在第一,二象限,
由平几知识可知,这样的三个点构成的必然是钝角三角形.
故选:B.

点评 本题主要考查三角形形状的判断,根据两点间的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.将6名留学归国人员分配到济南、青岛两地工作.若济南至少安排2 人,青岛至少安排3人,则不同的安排方法数为(  )
A.120B.150C.35D.55

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=min{2$\sqrt{x}$,|x-2|},其中min{a,b}=$\left\{\begin{array}{l}{aa≤b}\\{ba>b}\end{array}\right.$,若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1,x2,x3
(1)m的取值范围是$({0,2\sqrt{3}-2})$;
(2)当x1x2x3取最大值时,m=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(x-a)ex在区间(2,3)内没有极值点,则实数a的取值范围是(  )
A.(-∞,3]∪[4,+∞)B.[3,4]C.(-∞,3]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|-1<x<1},B={x|x2-3x≤0},则A∩B等于(  )
A.[-1,0]B.(-1,3]C.[0,1)D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(Ⅰ)求证:$\frac{PC}{AC}=\frac{PD}{BD}$;
(Ⅱ)若AC=2,求AP•AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z=-1-i(i为虚数单位),则$\frac{2-\overline{z}}{z}$对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在Rt△ACB中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置.
(Ⅰ)如图2,当A1C⊥CD时,求证:A1C⊥平面BCDE;
(Ⅱ)如图3,设平面A1CD与平面A1BE所成锐二面角为θ,当tanθ=$\frac{\sqrt{2}}{2}$时,求点C到平面A1BE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个三棱锥的三视图如图所示,其正视图、左视图、俯视图的面积分别是1,2,4,则这个几何体的外接球的表面积为21π.

查看答案和解析>>

同步练习册答案