| A. | (-∞,3]∪[4,+∞) | B. | [3,4] | C. | (-∞,3] | D. | [4,+∞) |
分析 由函数f(x)=(x-a)ex在区间(2,3)内没有极值点,可得f′(x)≥0或f′(x)≤0在区间(2,3)内恒成立,进而可得实数a的取值范围.
解答 解:∵f(x)=(x-a)ex,
∴f′(x)=(x+1-a)ex,
∵函数f(x)=(x-a)ex在区间(2,3)内没有极值点,
∴x+1-a≥0或x+1-a≤0在区间(2,3)内恒成立,
即a≤x+1或a≥x+1在区间(2,3)内恒成立,
∴a≤3或a≥4.
故实数a的取值范围是(-∞,3]∪[4,+∞),
故选A.
点评 本题考查的知识点是函数在某点取得极值的条件,其中将函数在定区间上无极值,转化为f′(x)≥0或f′(x)≤0在定区间上恒成立,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -sin4x | B. | cos4x | C. | sinx | D. | -cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com