| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
分析 通过设各点横坐标分别为xA、xB、xC、xD,依题意可求得xA、xB、xC、xD的值,利用a=|xA-xC|、b=|xB-xD|及基本不等式可求得当m变化时$\frac{b}{a}$的最小值.
解答 解:设A,B,C,D各点的横坐标分别为xA,xB,xC,xD,
则-log2xA=m,log2xB=m;
-log2xC=$\frac{4}{m+1}$,log2xD=$\frac{4}{m+1}$;
∴xA=2-m,xB=2m,xC=${2}^{-\frac{4}{m+1}}$,xD=${2}^{\frac{4}{m+1}}$.
∴a=|xA-xC|,b=|xB-xD|,
∴$\frac{b}{a}$=$\frac{|{x}_{B}-{x}_{D}|}{|{x}_{A}-{x}_{C}|}$=|$\frac{{2}^{m}-{2}^{\frac{4}{m+1}}}{{2}^{-m}-{2}^{-\frac{4}{m+1}}}$|=2m•${2}^{\frac{4}{m+1}}$=${2}^{m+\frac{4}{m+1}}$.
又m>0,∴m+$\frac{4}{m+1}$=(m+1)+$\frac{4}{m+1}$-1≥2$\sqrt{(m+1)•\frac{4}{m+1}}$-1=3(当且仅当m=1时取“=”),
∴$\frac{b}{a}$≥23=8,
故选:C.
点评 本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到$\frac{b}{a}$=$\frac{|{x}_{B}-{x}_{D}|}{|{x}_{A}-{x}_{C}|}$是关键,考查转化与数形结合的思想,考查分析与运算能力,注意解题方法的积累,属于难题.
科目:高中数学 来源: 题型:填空题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3]∪[4,+∞) | B. | [3,4] | C. | (-∞,3] | D. | [4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-1,3] | C. | [0,1) | D. | {-1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com