精英家教网 > 高中数学 > 题目详情
1.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边与单位圆的交点坐标为($\frac{3\sqrt{10}}{10}$,$\frac{\sqrt{10}}{10}$),则cos2α=$\frac{4}{5}$.

分析 先求得sinα和cosα的值,进而利用余弦的二倍角公式求得答案.

解答 解:依题意可知sinα=$\frac{\sqrt{10}}{10}$,cosα$\frac{3\sqrt{10}}{10}$,
∴cos2α=cos2α-sin2α=$\frac{9}{10}$-$\frac{1}{10}$=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题主要考查了二倍角的余弦公式,考查了学生对基础公式的熟练记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.过点(2,1),且平行于直线x=-3的直线方程为x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(x-a)ex在区间(2,3)内没有极值点,则实数a的取值范围是(  )
A.(-∞,3]∪[4,+∞)B.[3,4]C.(-∞,3]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(Ⅰ)求证:$\frac{PC}{AC}=\frac{PD}{BD}$;
(Ⅱ)若AC=2,求AP•AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z=-1-i(i为虚数单位),则$\frac{2-\overline{z}}{z}$对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,长度单位相同,直线l的参数方程为:$\left\{\begin{array}{l}x=t-1\\ y=t+1\end{array}\right.({t为参数})$,曲线C的极坐标方程为:ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}}$).
(Ⅰ)判断曲线C的形状,简述理由;
(Ⅱ)设直线l与曲线C相交于M,N,O是坐标原点,求三角形MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在Rt△ACB中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置.
(Ⅰ)如图2,当A1C⊥CD时,求证:A1C⊥平面BCDE;
(Ⅱ)如图3,设平面A1CD与平面A1BE所成锐二面角为θ,当tanθ=$\frac{\sqrt{2}}{2}$时,求点C到平面A1BE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(sin(ωx+φ),cos(ωx+φ))(ω>0,0<|φ|<$\frac{π}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.已知点(x1,y1)、(x2,y2)是函数f(x)图象上的任意两点,当|y1-y2|=4时,|x1-x2|的最小值为$\frac{π}{2}$,且函数f(x)为偶函数.
(Ⅰ)求f($\frac{5π}{12}$)的值;
(Ⅱ)将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到函数y=g(x)的图象,函数y=g(x)的图象与y=1在y轴右侧的交点依次记为A1、A2、A3…、An(n∈N*),求向量$\overrightarrow{{A}_{1}{A}_{6}}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.A,B两名学生在5次英语口语测试中的成绩统计如茎叶图所示(十位作为茎).
(1)现要从中选派一人参加英语口语竞赛,从两位同学的平均分和方差分析,选派谁参加更合适?说明理由.
(2)若将频率视为概率,对(1)中选派的学生在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ≥2的概率.

查看答案和解析>>

同步练习册答案