分析 (Ⅰ)运用两角差的正弦公式和ρ2=x2+y2,x=ρcosθ,y=ρsinθ,即可得到曲线C的普通方程,即可判断形状;
(Ⅱ)将直线l的参数方程代入圆的普通方程,可得M,N的坐标,再由三角形的面积公式计算即可得到.
解答 解:(Ⅰ)ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}}$)即为ρ=2$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinθ-$\frac{\sqrt{2}}{2}$cosθ)
=2sinθ-2cosθ,即ρ2=2ρsinθ-2ρcosθ,
即有x2+y2+2x-2y=0,即为(x+1)2+(y-1)2=2,
则曲线C的形状为以(-1,1)为圆心,$\sqrt{2}$为半径的圆;
(Ⅱ)将直线l的参数方程为:$\left\{\begin{array}{l}x=t-1\\ y=t+1\end{array}\right.({t为参数})$,
代入圆(x+1)2+(y-1)2=2,可得2t2=2,
解得t=±1,
可得M(0,2),N(-2,0),
则三角形MON的面积为S=$\frac{1}{2}$×2×2=2.
点评 本题考查极坐标方程和普通方程的互化,同时考查直线和圆的位置关系,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{3}$ | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com