精英家教网 > 高中数学 > 题目详情
15.如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)图象的一部分,为了得到这个函数的图象,只要将y=sinx的图象上所有的点(  )
A.向左平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B.向右平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
C.向左平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
D.向右平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

分析 根据函数图象的最大值求出A,根据最大值和对称中心的距离求得函数的最小正周期进而求得ω,结合最大值点,求得相位φ,则函数解析式可得,进而利用函数y=Asin(ωx+φ)的图象变换规律即可得解.

解答 解:∵由A>0,利用函数图象可得A=1,
又∵T=4($\frac{3π}{8}$-$\frac{π}{8}$)=π,故T=π=$\frac{2π}{|ω|}$,解得|ω|=2,
又∵ω>0,
∴ω=2,
故函数y=sin(2x+φ),
由函数经过($\frac{π}{8}$,1)点,
故2×$\frac{π}{8}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
则φ=$\frac{π}{4}$+2kπ,k∈Z,
又∵|φ|≤$\frac{π}{2}}$,
∴φ=$\frac{π}{4}$,
∴y=sin(2x+$\frac{π}{4}$),
故将函数y=sinx的图象上所有的点向左平行移动$\frac{π}{4}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),即可得到这个函数的图象.
故选:C.

点评 本题考查由y=Asin(ωx+φ)的部分图象求函数解析式,函数y=Asin(ωx+φ)的图象变换规律,关键是掌握利用五点作图中的某一点求φ的值的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.同时投掷两枚币一次,那么互斥而不对立的两个事件是(  )
A.“至少有1个正面朝上”,“都是反面朝上”
B.“至少有1个正面朝上”,“至少有1个反面朝上”
C.“恰有1个正面朝上”,“恰有2个正面朝上”
D.“至少有1个反面朝上”,“都是反面朝上”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别是角A、B、C所对的边,且满足a=3bcosC.
(Ⅰ)求$\frac{tanC}{tanB}$的值;
(Ⅱ)若a=3,tanA=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的各项均为正数,前n项和为Sn,S3=14,a1•a5=8a3,数列{bn}的前n项和为Tn,bn+bn+1=log2an
(1)求数列{an}的通项公式;
(2)求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一个周期的图象如图所示,则(  )
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c分别为△ABC的三个内角A,B,C的对边,asinB=bcos$\frac{A}{2}$,a=2,D为边BC的中点,过D向直线AB,AC引垂线,垂足分别为E,F.
(1)求A;
(2)求DE+2DF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.$-\frac{5}{2}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的首项a1=5,且an+1=2an+1(n∈N*).
(Ⅰ)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,AB=AC=1,且|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若点P是BC边上的动点,则$\overrightarrow{AP}•\overrightarrow{AE}$的取值范围是[$\frac{1}{4}$,$\frac{3}{4}$].

查看答案和解析>>

同步练习册答案