精英家教网 > 高中数学 > 题目详情
5.已知△ABC中,AB=AC=1,且|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若点P是BC边上的动点,则$\overrightarrow{AP}•\overrightarrow{AE}$的取值范围是[$\frac{1}{4}$,$\frac{3}{4}$].

分析 根据|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|得出$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,建立平面直角坐标系,利用平面向量的坐标运算表示出$\overrightarrow{AP}$•$\overrightarrow{AE}$,根据坐标运算即可求出$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围.

解答 解:△ABC中,AB=AC=1,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
以AC,AB为坐标轴建立平面直角坐标系,如图所示:

则A(0,0),C(1,0),B(0,1),
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴E($\frac{3}{4}$,$\frac{1}{4}$);
直线BC方程为x+y=1,即x+y-1=0;
设P(x,y),则0≤x≤1,
则$\overrightarrow{AP}$=(x,y),$\overrightarrow{AE}$=($\frac{3}{4}$,$\frac{1}{4}$),
∴$\overrightarrow{AP}$•$\overrightarrow{AE}$=$\frac{3}{4}$x+$\frac{1}{4}$y=$\frac{3}{4}$x+$\frac{1}{4}$(1-x)=$\frac{1}{2}$x+$\frac{1}{4}$;
∵0≤x≤1,∴$\frac{1}{4}$≤$\frac{1}{2}$x+$\frac{1}{4}$≤$\frac{3}{4}$;
即$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是[$\frac{1}{4}$,$\frac{3}{4}$].
故答案为:[$\frac{1}{4}$,$\frac{3}{4}$].

点评 本题考查了平面向量的数量积运算,建立坐标系使用坐标计算是常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)图象的一部分,为了得到这个函数的图象,只要将y=sinx的图象上所有的点(  )
A.向左平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B.向右平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
C.向左平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
D.向右平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过抛物线E:y2=2px(p>0)准线上任意点C作E的两条切线,切点分别为A,B.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)C在AB上的射影H是否为定点,若是,请求出其坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABCD⊥平面ABEF,四边形ABCD是矩形,四边形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为△OBF的重心.
(I)求证:平面ADF⊥平面CBF;
(II)求证:PM∥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)若f(x)的最小值为-1,求a的值;
(Ⅱ)求y=|f(x)|在区间[0,|a|]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示的多面体EF-ABCD中,AF⊥底面ABCD,AF∥CE,四边形ABCD为正方形,AF=2AB=2CE.
(1)求证:EF⊥平面BED;
(2)当三棱锥E-BDF的体积为4时,求多面体EF-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=8x的焦点为F,其准线与x轴的交点为Q,过点F作直线与此抛物线交于A,B两点,若$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,则|AF|-|BF|=(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.a=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

同步练习册答案