精英家教网 > 高中数学 > 题目详情
16.过抛物线E:y2=2px(p>0)准线上任意点C作E的两条切线,切点分别为A,B.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)C在AB上的射影H是否为定点,若是,请求出其坐标,若不是,请说明理由.

分析 (1)设C(-$\frac{p}{2}$,t),过C的切线l的方程为:y-t=k(x+$\frac{p}{2}$),联立抛物线E:y2=2px,消去x,利用△=0,结合韦达定理求k1•k2,即可求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)确定直线AB经过焦点F,直线AB的一个方向向量为$\overrightarrow{m}$=(1-k2,2k),证明$\overrightarrow{FC}$•$\overrightarrow{m}$=0,即可得出结论.

解答 解:(1)设C(-$\frac{p}{2}$,t),过C的切线l的方程为:y-t=k(x+$\frac{p}{2}$),
联立抛物线E:y2=2px,消去x得:ky2-2py+p(2t+pk)=0①
l与E相切时,方程①由两个相等的实根,则△=0,即pk2+2tk-p=0②
方程②的两根k1,k2是切线CA,CB的斜率,由根与系数的关系知:k1k2=-1,
∴CA⊥CB,
∴$\overrightarrow{CA}$•$\overrightarrow{CB}$=0;
(2)设A(x1,y1),B(x2,y2),设CA的斜率为k,则y1是方程①的相等实根,
由根与系数的关系得y1=$\frac{p}{k}$,则x1=$\frac{p}{2{k}^{2}}$.
由(1),CB的斜率为-$\frac{1}{k}$,
同理y2=-pk,则x2=$\frac{p{k}^{2}}{2}$.
∴kAB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{2k}{1-{k}^{2}}$.
直线AB的方程为y+pk=$\frac{2k}{1-{k}^{2}}$(x-$\frac{p{k}^{2}}{2}$).
令y=0,得x=$\frac{p}{2}$,∴直线AB经过焦点F.
由方程②得t=$\frac{p(1-{k}^{2})}{2k}$,则直线AB的一个方向向量为$\overrightarrow{m}$=(1-k2,2k),
$\overrightarrow{FC}$=(-p,$\frac{p(1-{k}^{2})}{2k}$)=$\frac{p}{2k}$(-2k,1-k2),
∴$\overrightarrow{FC}$•$\overrightarrow{m}$=0,
∴C在AB上的射影为定点F($\frac{p}{2}$,0).

点评 本题考查直线与抛物线的位置关系,考查根与系数的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别是角A、B、C所对的边,且满足a=3bcosC.
(Ⅰ)求$\frac{tanC}{tanB}$的值;
(Ⅱ)若a=3,tanA=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.$-\frac{5}{2}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的首项a1=5,且an+1=2an+1(n∈N*).
(Ⅰ)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从某班抽取5名学生测量身高(单位:cm),得到的数据为160,162,159,160,159,则该组数据的方差s2=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线y2=4x的焦点为F,其准线与x轴的交点为K,P为抛物线上的点,设|PK|=t|PF|,则实数t的取值范围是[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生的平均身高;
(Ⅱ)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(Ⅲ)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的分布列和数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,AB=AC=1,且|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若点P是BC边上的动点,则$\overrightarrow{AP}•\overrightarrow{AE}$的取值范围是[$\frac{1}{4}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=cos(2x+φ)的图象关于点($\frac{2}{3}$π,0)对称,若将函数f(x)的图象向右平移m(m>0)个单位得到一个偶函数的图象,则实数m的最小值为$\frac{π}{12}$.

查看答案和解析>>

同步练习册答案