精英家教网 > 高中数学 > 题目详情
8.某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生的平均身高;
(Ⅱ)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(Ⅲ)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的分布列和数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

分析 (I)计算平均身高用组中值×频率,即可得到结论;
(II)先理解频率分布直方图横纵轴表示的意义,横轴表示身高,纵轴表示频数,即每组中包含个体的个数;
根据频数分布直方图,了解数据的分布情况,知道每段所占的比例,从而求出这50名男生身高在177.5cm以上(含177.5cm)的人数;
(III)先根据正态分布的规律求出全市前130名的身高在182.5cm以上的50人中的人数,确定ξ的可能取值,求出其概率,即可得到ξ的分布列与期望.

解答 解:(Ⅰ)根据频率分布直方图,得我校高三年级男生平均身高为$\overline{x}$=160×0.02×5+165×0.04×5+170×0.06×5+175×0.04×5+180×0.02×5+185×0.02×5=171.5,
∴高于全市的平均值170.5;(4分)
(Ⅱ)由频率分布直方图知,后两组频率为0.2,
∴人数为0.2×50=10,
即这50名男生身高在177.5cm以上(含177.5 cm)的人数为10人;…(6分)
(Ⅲ)∵P(170.5-3×4<ξ≤170.5+3×4)=0.9974,
∴P(ξ≥182.5)=$\frac{1-0.9974}{2}$=0.0013,
∴0.0013×100 000=130,
全省前130名的身高在182.5 cm以上,这50人中182.5 cm以上的有5人;
∴随机变量ξ可取0,1,2,于是
P(ξ=0)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{5}^{1}}{{C}_{10}^{2}}$=$\frac{5}{9}$,P(ξ=2)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=,
∴Eξ=0×$\frac{2}{9}$+1×$\frac{5}{9}$+2×$\frac{2}{9}$=1.…(12分)

点评 本题考查了频率分布直方图的应用问题,也考查了离散型随机变量的期望与方差的计算问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图1,在等腰梯形ABCD中,BC∥AD,BC=$\frac{1}{2}$AD=2,∠A=60°,E为AD中点,点O,F分别为BE,DE的中点.将△ABE沿BE折起到△A1BE的位置,使得平面A1BE⊥平面BCDE(如图2).
(Ⅰ)求证:A1O⊥CE;
(Ⅱ)求直线A1B与平面A1CE所成角的正弦值;
(Ⅲ)侧棱A1C上是否存在点P,使得BP∥平面A1OF?若存在,求出$\frac{{{A_1}P}}{{{A_1}C}}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于给定的正整数n,若等差数列a1,a2,a3,…满足a12+a2n+12≤10,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为10n+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过抛物线E:y2=2px(p>0)准线上任意点C作E的两条切线,切点分别为A,B.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)C在AB上的射影H是否为定点,若是,请求出其坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x-1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面ABCD⊥平面ABEF,四边形ABCD是矩形,四边形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为△OBF的重心.
(I)求证:平面ADF⊥平面CBF;
(II)求证:PM∥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示的多面体EF-ABCD中,AF⊥底面ABCD,AF∥CE,四边形ABCD为正方形,AF=2AB=2CE.
(1)求证:EF⊥平面BED;
(2)当三棱锥E-BDF的体积为4时,求多面体EF-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求证:对任意x∈R,sinx,cos2x,1+sinx这3个函数的值至少有一个不大于$\frac{5}{6}$.

查看答案和解析>>

同步练习册答案