精英家教网 > 高中数学 > 题目详情
18.如图1,在等腰梯形ABCD中,BC∥AD,BC=$\frac{1}{2}$AD=2,∠A=60°,E为AD中点,点O,F分别为BE,DE的中点.将△ABE沿BE折起到△A1BE的位置,使得平面A1BE⊥平面BCDE(如图2).
(Ⅰ)求证:A1O⊥CE;
(Ⅱ)求直线A1B与平面A1CE所成角的正弦值;
(Ⅲ)侧棱A1C上是否存在点P,使得BP∥平面A1OF?若存在,求出$\frac{{{A_1}P}}{{{A_1}C}}$的值;若不存在,请说明理由.

分析 (Ⅰ)欲证明A1O⊥CE,只需推知A1O⊥平面BCDE即可;
(Ⅱ)根据直线与平面垂直的性质推知OA1,OB,OC两两垂直.所以以O为原点,OB,OC,OA1分别为x,y,z轴建立空间直角坐标系(如图2).结合平面A1CE的一个法向量和直线与平面所成角的正弦求法解答即可;
(Ⅲ)利用假设法进行解答:如图3,假设在侧棱A1C上存在点P,使得BP∥平面A1OF.设$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}C}$,λ∈[0,1].由菱形BCDE的性质得到CE⊥BD,结合(Ⅰ)可知:CE⊥平面A1OF.故$\overrightarrow{CE}=(-1,-\sqrt{3},0)$为平面A1OF的一个法向量.据此进行解答.

解答 解:(Ⅰ)如图1,在等腰梯形ABCD中,
∵BC∥AD,$BC=\frac{1}{2}AD=2$,∠A=60°,E为AD中点,
∴△ABE为等边三角形.
如图2,∵O为BE的中点,
∴A1O⊥BE.
又∵平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,
所以A1O⊥平面BCDE,所以A1O⊥CE;
(Ⅱ)如图2,连结OC,由已知得CB=CE,又O为BE的中点,
∴OC⊥BE.
由(Ⅰ)知A1O⊥平面BCDE,
∴A1O⊥BE,A1O⊥OC,
∴OA1,OB,OC两两垂直.
以O为原点,OB,OC,OA1分别为x,y,z轴建立空间直角坐标系(如图2).
∵BC=2,易知$O{A_1}=OC=\sqrt{3}$.
∴${A_1}(0,0,\sqrt{3}),B(1,0,0),C(0,\sqrt{3},0),E(-1,0,0)$,
∴$\overrightarrow{{A_1}B}=(1,0,-\sqrt{3}),\overrightarrow{{A_1}C}=(0,\sqrt{3},-\sqrt{3}),\overrightarrow{{A_1}E}=(-1,0,-\sqrt{3})$.
设平面A1CE的一个法向量为n=(x,y,z),
由$\left\{{\begin{array}{l}{n•\overrightarrow{{A_1}C}=0}\\{n•\overrightarrow{{A_1}E}=0}\end{array}}\right.$得$\left\{\begin{array}{l}\sqrt{3}y-\sqrt{3}z=0\\-x-\sqrt{3}z=0.\end{array}\right.$即$\left\{\begin{array}{l}y-z=0\\ x+\sqrt{3}z=0.\end{array}\right.$
取z=1,得$n=(-\sqrt{3},1,1)$.
设直线A1B与平面A1CE所成角为θ,
则$sinθ=|{cos?\overrightarrow{{A_1}B},n>}|=|{\frac{{-\sqrt{3}-\sqrt{3}}}{{2×\sqrt{5}}}}|=\frac{{\sqrt{3}}}{{\sqrt{5}}}=\frac{{\sqrt{15}}}{5}$.
所以直线A1B与平面A1CE所成角的正弦值为$\frac{{\sqrt{15}}}{5}$. 
(Ⅲ)如图3,假设在侧棱A1C上存在点P,使得BP∥平面A1OF.
设$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}C}$,λ∈[0,1].
∵$\overrightarrow{BP}=\overrightarrow{B{A_1}}+\overrightarrow{{A_1}P}=\overrightarrow{B{A_1}}+λ\overrightarrow{{A_1}C}$,
∴$\overrightarrow{BP}=(-1,0,\sqrt{3})+λ(0,\sqrt{3},-\sqrt{3})=(-1,\sqrt{3}λ,\sqrt{3}-\sqrt{3}λ)$.
易证四边形BCDE为菱形,且CE⊥BD,
又由(Ⅰ)可知,A1O⊥CE,所以CE⊥平面A1OF.
所以$\overrightarrow{CE}=(-1,-\sqrt{3},0)$为平面A1OF的一个法向量.
由$\overrightarrow{BP}•\overrightarrow{CE}=(-1,\sqrt{3}λ,\sqrt{3}-\sqrt{3}λ)•(-1,-\sqrt{3},0)=1-3λ=0$,得$λ=\frac{1}{3}∈[0,1]$.
所以侧棱A1C上存在点P,使得BP∥平面A1OF,且$\frac{{{A_1}P}}{{{A_1}C}}=\frac{1}{3}$.

点评 本题综合考查了直线与平面平行、垂直的判定,直线与平面所成的角以及空间中直线与直线之间的位置关系.难度较大,需要熟练掌握空间直角坐标系的建立与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\left\{\begin{array}{l}2{e^{x-1}}\;,x<3\\{log_3}({x^2}-1),x≥3\end{array}$,则$f(f(\sqrt{10}))$=(  )
A.1B.2C.2eD.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P(x,1)是抛物线x2=2py(p>0)上一点,若P到焦点的距离为3,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别是角A、B、C所对的边,且满足a=3bcosC.
(Ⅰ)求$\frac{tanC}{tanB}$的值;
(Ⅱ)若a=3,tanA=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.现有A,B两个箱子,A箱装有红球和白球共6,B箱装有红球4个、白球1个、黄球1个.现甲从A箱中任取2个球,乙从B箱中任取1个球.若取出的3个球恰有两球颜色相同,则甲获胜,否则乙获胜.为了保证公平性,A箱中的红球个数应为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的各项均为正数,前n项和为Sn,S3=14,a1•a5=8a3,数列{bn}的前n项和为Tn,bn+bn+1=log2an
(1)求数列{an}的通项公式;
(2)求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一个周期的图象如图所示,则(  )
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.$-\frac{5}{2}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生的平均身高;
(Ⅱ)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(Ⅲ)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的分布列和数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

同步练习册答案