精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的首项a1=5,且an+1=2an+1(n∈N*).
(Ⅰ)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Sn

分析 (I)由an+1=2an+1,变形为:an+1+1=2(an+1),且a1+1=6≠0,利用等比数列的通项公式及其定义即可得出;
(II)由nan=n(3•2n-1),数列{nan}的前n项和Sn=3(2+2×22+3×23+…+n×2n)-(1+2+3+…+n),利用“错位相减法”、等比数列与等差数列的前n项和公式即可得出.

解答 (I)证明:∵an+1=2an+1,
∴an+1+1=2(an+1),且a1+1=6≠0,∴$\frac{{{a_{n+1}}+1}}{{{a_n}+1}}$=2,﹍﹍﹍﹍﹍﹍﹍﹍﹍(3分)
∴数列{an+1}是以6为首项,2为公比的等比数列,﹍﹍﹍﹍﹍﹍﹍﹍﹍(4分)
∴an+1=(a1+1)•2n-1=6•2n-1=3•2n
∴an=3•2n-1.﹍﹍﹍﹍﹍﹍﹍﹍﹍(6分)
(II)∵nan=n(3•2n-1),
数列{nan}的前n项和Sn=3(2+2×22+3×23+…+n×2n)-(1+2+3+…+n),
令Tn=2+2×22+3×23+…+n×2n
∴2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1
∴-Tn=2+22+23+…+2n-n•2n+1
=$\frac{{2(1-{2^n})}}{1-2}$-n•2n+1=-(n-1)•2n+1-2,
∴Tn=(n-1)•2n+1+2,﹍﹍﹍﹍﹍﹍﹍﹍﹍(10分)
∴Sn=3(n-1)•2n+1-$\frac{n(n+1)}{2}$+6.﹍﹍﹍﹍﹍﹍﹍﹍﹍(12分)

点评 本题考查了数列的递推关系、“错位相减法”、等比数列与等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知抛物线C:y2=4x,过抛物线C的焦点F的直线l0与C交于A,B(A在x轴上方)两点,且|AF|=3|BF|,则△OAB(O为坐标原点)的面积为(  )
A.$\frac{4\sqrt{3}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)图象的一部分,为了得到这个函数的图象,只要将y=sinx的图象上所有的点(  )
A.向左平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B.向右平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
C.向左平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变
D.向右平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|y=log2(x-1)},B={y|y=2x},则B∩(∁UA)为(  )
A.(0,+∞)B.[1,+∞)C.(0,1]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于给定的正整数n,若等差数列a1,a2,a3,…满足a12+a2n+12≤10,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为10n+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.
(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过抛物线E:y2=2px(p>0)准线上任意点C作E的两条切线,切点分别为A,B.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)C在AB上的射影H是否为定点,若是,请求出其坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=8x的焦点为F,其准线与x轴的交点为Q,过点F作直线与此抛物线交于A,B两点,若$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,则|AF|-|BF|=(  )
A.8B.9C.10D.12

查看答案和解析>>

同步练习册答案