| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
分析 假设方程与抛物线方程联立,借助于求出点A,B的横坐标,利用抛物线的定义,即可求出|AF|-|BF|.
解答 解:假设k存在,设AB方程为:y=k(x-2),
与抛物线y2=8x联立得k2(x2-4x+4)=8x,
即k2x2-4(k2+2)x+4k2=0
设两交点为A(x2,y2),B(x1,y1),
∵$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,∴(x1-2)(x1+2)+y12=0,
∴x12+y12=4,∴x12+2px1-4=0(x1>0),∴x1=-4+2$\sqrt{5}$,
∵x1x2=4,∴x2=4+2$\sqrt{5}$,
∴|AF|-|BF|=(x2+2)-(x1+2)=8,
故选:A.
点评 本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com