分析 利用正弦定理将边化角,化简即可得出sinB,cosB的关系,利用同角三角函数的关系求出cosB,得出B的值.
解答 解:在三角形ABC中,∵$\frac{1+cosB}{sinA}$=$\frac{\sqrt{3}b}{a}$=$\frac{\sqrt{3}sinB}{sinA}$,
∴1+cosB=$\sqrt{3}$sinB,即cosB=$\sqrt{3}$sinB-1.
∵sin2B+cos2B=1,
∴4sin2B-2$\sqrt{3}$sinB=0,解得sinB=$\frac{\sqrt{3}}{2}$或sinB=0(舍),
∴cosB=$\sqrt{3}×\frac{\sqrt{3}}{2}-1$=$\frac{1}{2}$.
∴B=$\frac{π}{6}$.
点评 本题考查了正弦定理,同角三角函数的关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{11}{10}$ | C. | $\frac{13}{14}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com